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ABSTRACT 
Micropropagated plantlets are physiologically different from normal plants showing reduced photosynthetic activity, lower wax deposits, 
poorly functioning stomata, under developed root system and very few leaf and root hairs. These problems can be significantly overcome 
by inoculating beneficial microorganisms into micropropagated plantlets. In addition, the beneficial microorganisms protect the 
micropropagated plantlets from varied biotic and abiotic stresses such as saline, drought and flooding. Recently biological hardening 
(biopriming) is associated with the induction of resistance in tissue culture propagules using beneficial microorganisms against biotic and 
abiotic stresses upon transplanting and during early growth after transplanting. Among the different beneficial microbes, use of plant 
growth promoting rhizobacteria (PGPR) in plant nurseries have advantage in accelerating the production process by minimizing the time 
required for lignification of micropropagated plantlets. Research findings from several laboratories demonstrated the bacteria mediated 
improvement in host physiology and their studies indicated the sustainability of microbes and their utilities in micropropagated plantlets 
especially for banana (Musa spp) even after transplanting into field conditions. 
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INTRODUCTION 
 
Plants in their natural environment are colonized by both 
external and internal microorganisms. Some microorga-
nisms, particularly beneficial bacteria and fungi, can im-
prove plant performance under stress environments and 
consequently enhance yield (Lazarovits and Nowak 1997; 
Creus et al. 1998; Kavino et al. 2008). Plants inoculated by 
microorganisms develop systemic resistance (systemic ac-
quired resistance, SAR, or induced systemic resistance, 
ISR) and/or benefit from their antagonistic abilities towards 
pathogens (cross protection) (Ramamoorthy et al. 2001; 

Walters et al. 2005). Although, the inoculation of seeds 
with beneficial microorganisms has been practiced for more 
than 50 years, the inoculation of tissue culture propagules to 
enhance plant performance is relatively new (Nowak and 
Shulaev 2003). Plant tissue culture is based on axenic (con-
taminant-free) culture systems. Hence, endophytic patho-
genic microorganisms are treated as problem causing con-
taminants, and various procedures have been developed to 
eliminate them. Recently, microbial inoculants, such as bac-
terial and mycorrhizal, have been evaluated as propagule 
priming agents both as in vitro co-cultures and on trans-
planting (Nowak and Shulaev 2003; Weber et al. 2007). 
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Upon exposure to stress, the pre-sensitized or primed plant 
adapt better and faster than non-primed plants (Conrath et 
al. 2002). The organisms under most scrutiny for potential 
use in agriculture and horticulture are beneficial bacteria 
belonging to the genera Pseudomonas and Bacillus (Powell 
and Rhodes 1994; Choudhary and Johri 2009; Lugtenberg 
and Kamilova 2009). Similarly, the use of plant growth-
promoting bacteria for biocontrol of plant diseases and the 
principles and mechanisms of action involved in the man-
agement of plant diseases are discussed in detail by Com-
pant et al. (2005). This use of microbial inoculants, pri-
marily bacteria as propagule priming agents both as in vitro 
co-cultures and on transplanting (Nowak and Pruski 2002), 
often referred as “biopriming”, is an emerging trend in 
biotechnology aimed at reducing chemical input in plant 
production, while increasing plant fitness, productivity and 
their resistance against pest and diseases, in the context of 
sustainable horticulture (Conrath et al. 2006). In this review, 
the main emphasis has been given on the biohardening of 
tissue culture plants using beneficial microbes and their 
utility in horticultural cropping system. 
 
BIOPRIMING FOR GROWTH AND DEVELOPMENT 
OF PLANTS 

 
PGPR has both indirect and direct impact on plant growth 
and development (Solano et al. 2008; Walters and Foun-
taine 2009). The various effects of beneficial microbes on 
crop plants and their method of inoculation have been given 
in Table 1. The indirect promotion of plant growth occurs 
when beneficial bacteria prevent some of the deleterious 
effects of a phytopathogenic organism by one or more me-
chanisms (Raaijmakers et al. 2009; Wang et al. 2009). On 
the other hand, the direct promotion of plant growth by 
PGPR generally entails providing the plant with a com-
pound that is synthesized by the bacterium or facilitating 
the uptake of nutrients from the environment (Glick 1995; 
Glick et al. 1999; Dubuis et al. 2007; Adesemoye et al. 
2009). Plant growth benefits due to the addition of PGPR 
include increase in germination rate, root growth, leaf area, 
chlorophyll content, magnesium, nitrogen and protein con-
tent, hydraulic activity, tolerance to drought and salt stress, 
shoot and root weights and delayed leaf senescence which 
ultimately enhanced the yield of crop plants (Lucy et al. 
2004; van Loon 2007). 

Micropropagated plants are now utilized as an integral 
component of the on going eradication and rehabilitation 
program in the developing countries as a control approach 
to viral diseases, which are commonly spread through pro-
pagative materials as well as to get higher yield. Unfortu-
nately, tissue culture plantlets are more susceptible to pest 
and disease all over the world. In this context, biopriming 
mediates the metabolic response of in vitro grown plant 
material to microbial inoculants, leading to the develop-
mental and physiological changes, enhancing biotic and 
abiotic stress resistance of the derived propagules (Nowak 
1998; Nakkeeran et al. 2005; Bernal et al. 2008; Harish et 
al. 2009a). Tissue culture techniques provide an opportunity 
for the introduction of nitrogen fixing endophytes into clo-
nally propagated plants for sustainable production systems 
(Reis et al. 1999). These microorganisms can offer during 
the in vitro culture and also in the acclimatization phase, a 
potentially efficient method to improve vigor and adapta-
tion of plantlets for transplanting (Nowak 1998). 

The use of plant growth promoting rhizobacteria 
(PGPR) in plant nurseries has the advantage of accelerating 
the production process by minimizing the time required for 
the lignifications of plantlets with the purpose of obtaining 
hardened plants which is essential for their future develop-
ment after transplant into the field (Caesar and Burr 1987; 
Ramamoorthy et al. 2002a). Potato, tomato, pepper, and 
other vegetable nodal explants in dual cultures with a Pseu-
domonas sp. strain PsJN showed significant growth stimu-
lation under sterile tissue culture conditions and during 
early growth after transplanting (Nowak et al. 1995; Bha-

rathi et al. 2004). Inoculated plants of potato were taller 
with more nodes, higher dry matter content, better deve-
loped root systems, more leaf hairs, increased amounts of 
chlorophyll and starch and were more lignified (Frommel et 
al. 1991). Non inoculated plantlets desiccated rapidly when 
removed from tissue culture conditions, whereas bacterized 
plants remain turgid because they had functional stomata 
and could regulate water loss (Frommel et al. 1991). Soil 
less transplant media amended with a formulation of PGPR 
designated LS 213 has been shown to improve plant vigour, 
reduce disease severity and increase yield of tomato, pepper 
(Kokalis-Burelle et al. 2002, 2006), muskmelon and water-
melon (Kokalis-Burelle et al. 2003) in Florida. Strawberry 
cv. ‘Camarosa’ transplant plugs amended with LS 213 
(PGPR formulation) resulted in a greater enhancement of 
growth and yield (Kokalis-Burelle 2003). In Prunus root-
stocks, Pseudomonas strains could promote the growth of 
rootstocks when applied to the potting mix under green-
house conditions (Bonaterra et al. 2003). Shoot growth in-
crease upon treatment with B. subtilis strain EBW4 were re-
ported in apple trees (Utkhede and Smith 1992). Inoculation 
of efficient bacterial strains in micropropagated pineapple 
plantlets before transplanting increased the shoot and root 
dry weight and leaf area (Mello et al. 2000). Bacterial sus-
pension of Bacillus sp. when applied at the beginning of the 
weaning phase in banana cv. ‘Grand Naine’ (AAA) signi-
ficantly improved the banana growth and development and 
foliar mineral contents (Vega et al. 2004). Bacterized potato 
plantlets were greener, had elevated levels of cytokinins, 
PAL, and free phenolics (Nowak et al. 1997). Micropropa-
gated banana plantlets which were immersed in bacterial 
mixtures during planting significantly improved the growth 
characters (Albuquerque et al. 2003). Ryu et al. (2003) re-
ported that treatment of tomato transplants by a biological 
preparation containing industrial formulated spores of 
Bacillus subtilis GB 03, B. amyloliquefaciens IN 937a and a 
chitosan significantly increased the growth of tomato trans-
plants irrespective of the concentrations or potting medium 
used compared to the carrier and a non treated control. The 
use of bacterial strains in combination with IBA applica-
tions significantly increased the rooting of cuttings sour 
cherry (Esitken et al. 2003) and hazelnut (Bassil et al. 
1991). 

The mechanisms involved in growth promotion are in-
creased production of auxin, gibberellin, cytokinin, ethylene 
(Kloepper and Schroth 1981; García de Salamone et al. 
2001; Bottini et al. 2004; Glick et al. 2007; Remans et al. 
2008; Ortíz-Castro et al. 2009), the solubilization of phos-
phorus and oxidation of sulfur, increase in nitrate availa-
bility, the extra cellular production of antibiotics (Whipps 
2001), lytic enzymes, hydrocyanic acid, increase in root 
permeability, strict competition for the available nutrients 
and root sites (Enebak and Carey 2000), symbiotic N2 fixa-
tion, mobilization of insoluble nutrients (Subba Rao 1982) 
and volatile components (Ryu et al. 2004). Some bacteria 
solubilize organic phosphate by secreting phosphatase or 
inorganic phosphate from soil particles by releasing organic 
acids and this could make phosphorus as well as micro-
nutrients more readily available for plant growth in some 
soils (Kloepper et al. 1991). In potato plantlets grown in 
vitro, strain PsJN increased cytokinin content by inducing 
synthesis in the early stages of plant growth and develop-
ment (Lazarovits and Nowak 1997). Thus, it appears that 
rhizobacteria also affect hormone metabolism and reactivity 
within the plant itself. 

 
PHYSIOLOGICAL RESPONSE OF 
MICROPROPAGATED PLANTLETS 

 
Biopriming for abiotic stress tolerance in plants 

 
Upon exposure to stress, the pre-sensitized or primed plants 
adapt better and faster than the non-primed plants (Goellner 
and Conrath 2008) and rhizosphere bacteria have also been 
found to help plants tolerate abiotic stresses (Liddycoat et al. 
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Table 1 Beneficial microorganisms used as inoculants in various plantlets and its significance on plant characters. 
Bio control agents Crop 

(micropropagated)
Method of 
inoculation 

Significance Reference 

Bacillus sp. and Pseudomonas corrugata Tea Ex vitro Improving the survival rate of seedlings Pandey et al. 2000
Enterobacter sp. Sugarcane Ex vitro Growth promotion Mirza et al. 2001
Burkholderia vietnamiensis Sugarcane In vitro co culture Improving the growth and yield Govindarajan et al.

2006 
Pseudomonas putida, Pseudomonas 
fluorescens 

Sugarcane Ex vitro Growth promotion Mehnaz et al. 2009

Fungal endophyte (Sordariomycete sp.) Peppermint In vitro & In vivo Growth promotion Mucciarelli et al. 
2003 

Ericoid mycorrhiza (Oidiodendron sp.) Rhododendrons In vitro & Post vitro Growth promotion Jansa and Vosatka 
2000 

Glomus mosseae, Bacillus coagulans and 
Trichoderma harzianum 

Ficus benjamina Ex vitro Growth promotion Srinath et al. 2003

Arbuscular mycorrhizal fungi (Glomus sp.) Capsicum annum Acclimatization and 
post acclimatization

Improving the physiological traits Estrada-Luna and 
Davies 2003 

Bacillus megaterium, B. subtilis and 
Pseudomonas corrugata as individual 

Picrorhiza kurrooa Acclimatization Growth promotion Trivedi and Pandey 
2007 

Pseudomonas sp. PsJN Tomato Root dipping Growth promotion Pillay and Nowak 
1997 

Pseudomonas fluorescens and Pantoea 
agglomerans 

Prunus rootstock Application through 
irrigation (liquid) 

Growth promotion Bonaterra et al. 
2003 

Trichoderma harzianum, Glomus 
catenulatum and Bacillus subtilis 

Strawberry Applied at weaning 
stage 

Growth promotion and disease control Vestberg et al. 
2004 

Arbuscular mycorrhizal fungi (Glomus sp.) 
and Pseudomonas putida 

Strawberry Co inoculation Growth promotion Vosatka et al. 1992

Glomus fasciculatum Avocado Applied at hardening 
stage 

Growth promotion Vidal et al. 1992 

Pseudomonas sp. PsJN Watermelon and 
cantaloupe 

In vitro Growth promotion Liu et al. 1995 

Pseudomonas sp. PsJN Grape In vitro Growth promotion and disease control Barka et al. 2000
Pseudomonas sp. PsJN Grape In vitro Growth promotion and disease control Barka et al. 2002
Pseudomonas sp. PsJN Potato In vitro co culture Growth promotion Frommel et al. 

1991 
 Pseudomonas sp. PsJN Potato In vitro Growth promotion Nowak et al. 1995
Pseudomonas sp. PsJN Potato In vitro Growth promotion and disease control Nowak 1998 
Pseudomonas fluorescens Potato In vitro Growth promotion Duffy et al. 1999
Burkholderia sp.strain PsJN Tomato, cucumber 

and sweet pepper 
In vitro co-culture Enhancing the transplant performance Nowak et al. 2004

Fusarium oxysporum strain V5w2 (fungal 
endophyte) 

Banana Applied at hardening 
stage 

Pest control (Cosmopolites sordidus and 
Radopholus similis) 

Dubois et al. 2004

Bacillus sp. strain INR7,T4 & IN937b Banana Applied at hardening 
stage 

Growth promotion Vega et al. 2004 

Glomus manihotis and Bacillus sp. strain 
INR7, T4 and IN937b 

Banana Applied at 
acclimatization stage

Growth promotion and nutrition Rodríguez-Romero 
et al. 2005 

Streptomyces violaceusniger strain g10 Banana Applied at 
acclimatization stage

Disease control (Fusarium wilt) Getha et al. 2005

Beauveria bassiana Banana Applied at 
acclimatization stage

Pest control (Cosmopolites sordidus) Akello et al. 2007

Burkholderia spp. and Herbaspirillum spp. Banana Applied at 
acclimatization stage

Disease control (Fusarium wilt) Weber et al. 2007

Fusarium oxysporum strain V5w2 and 
III4w1 

Banana Applied at 
acclimatization stage

Pest control (Cosmopolites sordidus and 
Radopholus similis) 

Paparu et al. 2007

Serratia sp. strain UPM39B3 and Fusarium 
oxysporum strain UPM31P1 

Banana Applied at 
acclimatization stage

Growth promotion and disease control 
(Fusarium wilt) 

Ting et al. 2008 

Bacillus sphaericus UPMB10 Banana In vitro Growth promotion and nutrition Maziah et al. 2010
Mixture of endophytes (proteobacteria) Banana Ex vitro Growth promotion and disease control Lian Jie et al. 2009
Azospirillum brasilense strain Sp7 and 
Bacillus sphaericus st.UPMB10 

Banana Ex vitro Growth promotion and nutrition Baset Mia et al. 
2009 

Two isolates of Bacillus spp. (B21 and B31) 
and two isolates of Pseudomonas (P52 and 
P58) + two non-pathogenic Fusarium 
oxysporum isolates (E3 and E4), two 
Trichoderma atroviride isolates (E1 and E2) 

Banana Ex vitro Growth promotion and reduced 
nematode incidence 

Chaves et al. 2009

Endophytic Fusarium oxysporum isolates 
Emb2.4o and V5w2 

Banana Ex vitro Growth promotion and pest control 
(Cosmopolites sordidus and Radopholus 
similis) 

Paparu et al. 2009

Beauveria bassiana (Balsamo) Vuillemin Banana Ex vitro Growth promotion Akello et al. 2009
F. oxysporum strain 162, Paecilomyces 
lilacinus strain 251 and the antagonistic 
bacteria Bacillus firmus 

Banana Ex vitro Pest control (Radopholus similis) Mendoza and 
Sikora 2009 
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2009; Yang et al. 2009). The bacterized potato plantlets 
transplanted directly from culture vessels to the field had 
significantly better survival than the non-bacterized controls 
(Nowak et al. 1999). A mixture of three strains of rhizo-
bacteria improved the post-transplanting performance of 
strawberries when bacterized with post in-vitro conditions 
(Vosatka et al. 2000). In tea, hardening of tissue-cultured 
plants with bacterial inoculations enhanced the survival per-
centage (up to 100, 90 and 86%) as against control plants (0, 
52 and 36%) in rainy, winter and summer seasons respec-
tively (Pandey et al. 2000). Acclimatization of micropropa-
gated plants (tomato, pepper and vinca) inoculated with 
PGPR showed a higher survival rate and a better quality of 
hardened off specimens (Carletti 2000). The post vitro 
mycorrhization and bacterization of micropropagated straw-
berry and potato with certain combinations of bacteria and 
mycorrhiza enhanced greenhouse production of minitubers 
and a mixture of three strains of rhizobacteria improved the 
post transplanting performance of strawberries (Vosatka et 
al. 2000). In banana, bioprimimg with cocktails of Pseudo-
monads strains significantly enhanced the survival percen-
tage of banana cv. ‘Virupakshi (AAB)’ under rainfed eco-
systems (Kavino 2005). Conspicuously, some PGPR pos-
sesses the enzyme 1-aminocyclopropane-1-carboxylate 
(ACC) deaminase (Jacobson et al. 1994; Glick et al. 1997) 
and this enzyme can cleave the plant ethylene precursor 
ACC, and thereby lower the level of ethylene in a deve-
loping or stressed plant (Sheehy et al. 1991; Mayak et al. 
2004b). By facilitating the formation of longer roots, these 
growth promoting bacteria may enhance the survival of 
plant seedlings under various biotic and abiotic stresses. In 
addition, plants that are treated with ACC deaminase-con-
taining PGPR are dramatically more resistant to the delete-
rious effects of ethylene that is synthesized as a conse-
quence of stressful conditions such as flooding (Grichko 
and Glick 2001), heavy metals (Grichko et al. 2000), the 
presence of phytopathogens (Wang et al. 2000), drought 
and high salt (Mayak et al. 2004a, 2004b). Recently, Sara-
vanakumar and Samiyappan (2007) demonstrated the role 
of ACC deaminase of P. fluorescens strain TDK1 against 
salt stress in groundnut plants under field conditions. 

 
Biopriming for biotic stress tolerance in plants 
 
The use of PGPR has been reported for the control of vari-
ous fungal, bacterial and viral pathogens (Gutterson 1990; 
Wei et al. 1991; Kavino et al. 2007; Udaya Shankar et al. 
2009; Verhagen et al. 2010). Kurze et al. (2001) evaluated a 
chitinolytic rhizobacterium, Serratia plymuthica strain 
HRO-C48, as a bare root transplant dip for strawberries and 
had good success in reducing disease caused by Verticillium 
and Phytophthora and increasing yields. Bacterial strains 84 
and 4B when introduced to banana roots of tissue cultured 
plants at de-flasking stage significantly improved plant 
growth and reduced infection of Fusarium oxysporum f.sp. 
cubense in the rhizome under greenhouse conditions (Smith 
et al. 2003). Roots of apple seedlings soaked in the bacterial 
suspension of selected antagonistic PGPR strains before 
planting and supplemented by adding and mixing the sus-
pension into the soil and repeated irrigation treatments with 
the antagonists reduced the replant disease in apple seed-
lings (Bir’o et al. 1998). Application of Bacillus spp. through 
transplant plug delivery system significantly improved the 
growth and development of drip irrigated pepper and re-
duced the bacterial spot disease incidence in the field (Vav-
rina 2004). Similarly, application of Fluorescent pseudomo-
nads increased plant growth promotion in tomato and hot-
pepper (Ramamoorthy et al. 2002b). Vegetable transplant 
plugs of tomato and cucumber when treated with bio pre-
parations (Bacillus spp. with chitin) significantly reduced 
the disease severity of bacterial spot and late blight of 
tomato and angular leaf spot of cucumber respectively 
(Amruthesh et al. 2003). In grapes, when in vitro bacterized 
plantlets were challenged with Botrytis cinerea, the symp-
toms of grey mold failed to develop compared to non-bac-

terized controls (Barka et al. 2002). Micropropagated 
rooted banana plantlets which were immersed in bacterial 
mixtures significantly controlled the Fusarium wilt disease 
at the time of planting (Albuquerque et al. 2003). Similarly, 
Müller and Berg (2008) reported the effect of biocontrol 
agent Serratia plymuthica HRO-C48 on Verticillium wilt in 
oilseed rape. Recently it has been reported that biopriming 
banana plants with mixtures of Pseudomonas strains signi-
ficantly reduced the bunchy top disease incidence under 
greenhouse and field conditions (Harish et al. 2008; Kavino 
et al. 2009). 

 
PEST AND DISEASE RESISTANCE OF BIOPRIMED 
PLANTS 

 
A large number of defense enzymes have been associated 
with biopriming which includes phenylalanine ammonia 
lyase, chitinase, �-1,3-glucanase, peroxidase, polyphenol 
oxidase, superoxide dismutase, catalase, ascorbate peroxi-
dase, lipoxygenase and proteinase inhibitors (Ye et al. 1990; 
Koch et al. 1992; Schneider and Ullrich 1994; van Loon 
1997). Chitinases and �-1,3-glucanases are pathogenesis 
related (PR) proteins and they are activated during incom-
patible plant pathogen interactions (Harish et al. 2009b). 
Biopriming can also signal molecules related to salicylic 
acid or jasmonic acid mediated pathway which are activated 
by necrotizing pathogens and chemical inducers (Borges et 
al. 2009; Vicedo et al. 2009). These enzymes also bring 
about liberation of molecules that elicit the first steps of 
induction of resistance, phytoalexins and phenolic com-
pounds (Keen and Yoshikawa 1983; van Loon et al. 1994). 

Induced systemic resistance by PGPR has been 
achieved in large number of crops including Arabidopsis 
(Pieterse et al. 1996), cucumber (Wei et al. 1996), tobacco 
(Troxler et al. 1997), tomato (Duijff et al. 1997), potato 
(Doke et al. 1987), radish (Leeman et al. 1996), carnation 
(van Peer et al. 1991), bean (de Meyer and Hofte 1997), 
sugarcane (Viswanathan and Samiyappan 1999), chilli, 
brinjal (Ramamoorthy and Samiyappan 2001; Bharathi et al. 
2004), mango (Vivekananthan et al. 2004) and banana 
(Kavino et al. 2007; Harish et al. 2008) against broad spec-
trum of pathogens including fungi (Doke et al. 1987; Lee-
man et al. 1995), bacteria (Liu et al. 1995a; 1995b) and 
viruses (Maurhofer et al. 1994; Kandan et al. 2005). 

 
Peroxidase 

 
Peroxidases (PO) have been implicated in the regulation of 
plant cell elongation, phenol oxidation, polysaccharide 
cross-linking, IAA oxidation, cross linking of extension 
monomers, oxidation of hydroxyl–cinnamyl alcohols into 
free radical intermediates and wound healing (Vidhyaseka-
ran et al. 1997). Bradley et al. (1992) reported that the in-
creased PO activity has been correlated with resistance in 
many species including barley, cucurbits, cotton, tobacco, 
wheat and rice and these enzymes are involved in the poly-
merization of proteins and lignin or suberin precursors into 
plant cell wall, thus constructing a physical barrier that 
could prevent pathogen penetration of cell walls and move-
ment through vessels. Plant root colonization by PGPR was 
associated with PO activity. These enzymes are also part of 
the response of plant defense to pathogens (Hammers-
chmidt and Kuc 1995) and they may decrease the quality of 
these plants as host for insects. High level expression of PO 
was reported in P. fluorescens strain Pf1 treated chilli plants 
challenged with Colletotrichum capsici (Bharathi et al. 
2004). The higher PO activity was noticed in cucumber 
roots treated with P. corrugata challenged with Pythium 
aphanidermatum (Chen et al. 2000). Multifold increase in 
PO activity was observed in the P. fluorescens strain Pf1 + 
B. subtilis + Neem + Chitin formulation treated plants over 
control in chilli against CMV (Bharathi 2001). The timely 
induction and greater accumulation of PO in tea plants 
primed with P. fluorescens strain Pf1 effectively reduced the 
incidence of blister blight disease under field conditions 
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besides increasing the yield (Saravanakumar et al. 2007). 
Recently, Kavino et al. (2008) reported greater accumula-
tion of PO in banana plants treated with endophytic and rhi-
zosphere bacterial strains which showed enhanced resis-
tance to Banana bunchy top virus (BBTV). 

 
Polyphenol oxidase (PPO) 

 
PPO usually accumulated upon wounding in plants. Bioche-
mical approaches to understand PPO function and regula-
tion are difficult, because the quinonoid reaction products 
of PPO covalently modify and cross-link the enzyme. PPO 
can be induced via octadecanoid defense signal pathway 
(Constabel et al. 1995). Chen et al. (2000) reported that 
PPO was stimulated by PGPR or by the pathogen, but the 
wounds on split roots did not influence PPO activity com-
pared to intact control in 13 days. PGPR untreated canes 
after pathogen inoculation showed comparatively lesser 
induction of PPO isoforms than the PGPR treated sugarcane 
(Viswanathan 1999). Expression of new PPO isoform was 
observed in P. fluorescens strain Pf1 treated tomato plants 
challenged with F. oxysporum f. sp. lycopersici (Rama-
moorthy et al. 2002b). In tomato, PPO is induced by cater-
pillar feeding, jasmonates and mechanical damage but not 
by mites or leafminers (Thaler et al. 1996). Similarly, in-
creased activity of PPO was observed in tomato by fluo-
rescent pseudomonads in response to infection by Tomato 
spotted wilt virus (Kandan et al. 2002). More induction of 
PPO activity in P. fluorescens strain Pf1 treated chilli plants 
in response to C. capsici correlated with reduced infection 
of anthracnose disease (Bharathi et al. 2004). Recently, 
Kavino et al. (2007; 2008) demonstrated the greater activity 
of defense related enzymes including PPO in biohardened 
banana plantlets showing resistance to BBTV. Thus, the 
activation of defense related enzymes is found to greatly 
influence the resistance mechanisms in bioprimed plants 
against insect pests and diseases. 

 
Phenylalanine ammonia lyase (PAL) 

 
PAL catalyzes the deamination of L-phenylalanine to trans-
cinnamic acid which is the first step in the biosynthesis of 
large class of plant natural products based on the phenyl-
propane skeleton, including lignin monomers as well as 
certain classes of phytoalexins. PAL activity also generates 
precursors of lignin biosynthesis and other phenolic com-
pounds that accumulate in response to pathogen infection 
(Klessig and Malamy 1994). PAL is the key enzyme in 
inducing the synthesis of salicylic acid (SA) which induces 
systemic resistance in many plants. Bacillus amylolique-
faciens strain EXTN-1-treated tobacco plants showed aug-
mented, rapid transcript accumulation of defense related 
genes including PR-1a, PAL and 3-hydroxy-3-methylgluta-
ryl CoA reductase (HMGR) following inoculation of Pep-
per mild mottle virus (PMMoV) (Ahn et al. 2002). When 
cucumber roots were treated with Pseudomonas corrugata 
13 or P. aureofaciens 63-28, PAL activity was stimulated in 
root tissues in two days and this activated accumulation 
lasted for 16 days after bacterization (Chen et al. 2000). 

 
Scavengers of reactive oxygen species 

 
One of the biochemical changes occurring in plants subjec-
ted to various environmental stress conditions is the produc-
tion of reactive oxygen species (ROS) such as superoxide 
radicals (O2-), hydrogen peroxide, single oxygen and hyd-
roxyl radicals (OH) (Iturbe-Ormaetxe et al. 1998; Cho and 
Park 2000). The ROS have a role in lipid peroxidation, 
membrane damage and consequently in plant senescence 
(Fridovich 1986; Thompson et al. 1987) and antioxidant 
enzymes such as superoxide dismutase (SOD), peroxidases 
(PO), ascorbate peroxidases (APX) and catalases (CAT) are 
involved in the scavenging of ROS (Asada 1992; Foyer 
1993). SOD is a metalloprotein that catalyzes the dismuta-
tion of superoxide to H2O2 and molecular oxygen (Allen 

1995). Various antioxidant enzymes such as CAT and PO 
eliminate H2O2. CAT found predominantly in peroxisomes 
dismutase H2O2 into H2O and O2, whereas PO decomposes 
H2O2 by oxidation of co-substrates such as phenolic com-
pounds and antioxidants (Sudhakar et al. 2001). Catalase 
and peroxidase are of particular interest because of their 
role in binding SA, which plays an important role in in-
duced resistance (Anderson et al. 1998). APX is primarily 
located in both chloroplasts and cytosol and eliminates per-
oxides by converting ascorbic acid to dehydroascorbate 
(Asada 1992). As a member of the ascorbic acid glutathione 
cycle, APX is one of the most important enzymes playing a 
crucial role in eliminating toxic H2O2 from plant cells 
during biotic and abiotic stress (Foyer et al. 1994; Cho and 
In-Taek 2003). Kavino (2005) assayed the greater activity 
of antioxidant enzymes such as SOD, PO and CAT in tissue 
culture banana plants primed with endophytic and rhizo-
sphere bacterial bioformulations which showed high resis-
tance to BBTV. Similar studies were carried out by Harish 
et al. (2009) who demonstrated that the defense related pro-
teins viz., chitinase and �-1,3-glucanases and defense 
related enzymes viz., PAL, PO and PPO were significantly 
activated in banana plants bioprimed with plant growth pro-
moting endophytic bacteria strains against BBTV. In ad-
dition to the enzyme induction, the bioprimed banana 
plantlets produced higher yield when compared to untreated 
plants under field conditions. Similarly, Kavino et al. 
(2008) demonstrated that biopriming of banana plantlets 
with bioformulations containing chitin molecules and P. 
fluorescens strain CHA0 effectively reduced the incidence 
of BBTV by activating different defense related enzymes. 
Recently, Saravanakumar et al. (2009) reported the dif-
ferential expression of PO, PPO and PAL in rice plants 
primed with mixtures of fluorescent pseudomonads. Thus, it 
is clearly evidenced from several researches that the ex-
pression of PO, PPO and PAL in crop plants mediated by 
plant growth promoting bacteria have resistant mechanisms 
to biotic and abiotic stresses. 

 
PR proteins (chitinases and glucanases) 

 
Evidence of �-1, 3-glucanases in disease resistance was first 
reported by Kauffmann et al. (1987). In dicots, �-1,3-glu-
canase genes are considered to constitute a part of the 
general array of defense genes induced during pathogenesis 
(Mauch and Staehelin 1989). Later, induction of �-1,3-
glucanases was demonstrated in barley and other monocots 
like wheat, rice and sorghum in response to infection by the 
necrotrophic pathogen, Bipolaris sorokiniana (Jutidamrong-
phan et al. 1991). Daugrois et al. (1992) reported rapid in-
duction of two �-1,3-glucanases in the incompatible interac-
tion between bean and C. lindemuthianum. Purified fungal 
elicitor can also induce defense related proteins in the host 
(Martinez-Esteso et al. 2009). Purified acidic �-1,3-gluca-
nases from cucumber had antifungal activity against C. 
orbiculare (Ji and Kuc 1996). Maurhofer et al. (1994) re-
ported that P. fluorescens strain CHA0 enhanced the activity 
of �-1,3-glucanases along with chitinases in tobacco and 
offered systemic protection against Tobacco necrosis virus. 
Xue et al. (1998) found an 8-fold increase in �-1,3-gluca-
nases in bean in response to binucleate Rhizoctonia (BNR) 
treatment and such treatment offered protection against 
pathogenic R. solani and C. lindemuthianum. Similarly, 
Vivekananthan et al. (2004) reported the more induction of 
�-1,3-glucanase isoforms in mango trees treated with P. 
fluorescens in response to infection by anthracnose patho-
gen than the untreated control. Recently, Kavino et al. 
(2007) reported the greater accumulation of glucanases in 
bacterized banana plantlets against BBTV infection. 

Chitinases are PR-proteins which hydrolyze chitin, 
major cell wall component constituents for 3-10% of higher 
fungi and cuticle of peritrophic membrane in insects. Chiti-
nase cleave a bond between C1 and C4 of two consecutive 
N-acetyl glucosamine (GlcNAc) either by endolytic or exo-
lytic mechanisms. A large number of plant chitinases have 
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been purified and characterized which are endochitinases 
with molecular weights ranging from 25 to 36 kDa. The 
production of chitinases in plants has been suggested to be a 
part of their defense mechanism against fungal pathogens 
(Schlumbaum et al. 1986). In recent years, several biocon-
trol agents have shown to induce systemic resistance in 
plants. Enhanced accumulation of chitinase in tobacco and 
bean leaves was observed in response to application of 
Pseudomonas spp. to roots (Zdor and Anderson 1992; Maur-
hofer et al. 1994). Increased chitinase activity in tobacco 
and maximum activity in cucumber have been observed as a 
result of systemic resistance by fluorescent pseudomonads 
against P. syringae pv. tabaci (Schneider and Ullrich 1994). 
Induction of four new chitinase isoforms with molecular 
weights of 12.0, 34.5, 53.5 and 63 kDa in Pseudomonas 
treated canes challenged with C. falcatum in sugarcane was 
observed (Viswanathan and Samiyappan 2001). Thus, the 
synthesis and accumulation of PR proteins upon exposure 
of plants to beneficial microorganisms have been found to 
play an important role in plant defense (Edreva 2005). 

 
Strengthening of plant cell wall 

 
The rapid strengthening of reaction sites of fungal and in-
sect entry delays the infection process and allows sufficient 
time for the host to built up other defense reactions. Seed 
treatment with PGPR in bean induces the lignification of 
cell wall (Anderson and Guerra 1985). Agrobacterium rhi-
zogenes Ri T-DNA transformed pea roots pre-inoculated 
with the endophytic bacterium, B. pumilus SE34 were pro-
tected against the root rot pathogen, F. oxysporum f. sp. pisi. 
They found that these cell walls were strengthened at the 
sites of attempted fungal penetration by opposition con-
taining large amounts of callose and phenolic substances, 
effectively preventing the fungal ingress. In tomato, bacteri-
zation with same bacterial strain has brought about cell wall 
thickening, deposition of phenolic compounds and forma-
tion of callose resulting in restricted growth of F. oxyspo-
rum f. sp. radicis-lycopersici to the epidermal cell and outer 
cortex in the root system in the treated plants (M’Piga et al. 
1997). Similar wall appositions and papillae were observed 
in pea roots treated with the P. fluorescens 63-28R upon 
challenge inoculation with either F. oxysporum f. sp. pisi or 
P. ultimum (Benhamou et al. 1996), indicating a general 
induction of physical defense barriers to pathogen ingress. 
Induction of thickening of cortical cell walls in tomato was 
seen after colonization of roots by P. fluorescens WCS417 
(Duijff et al. 1997). B. pumilus strain SE 34 has also in-
duced strengthening of cell wall structure in tomato against 
F. oxysporum f. sp. radicis-lycopersici (Benhamou and 
Theriault 1998). 

 
DEVELOPMENT OF BIOFORMULATION 

 
In developing formulations, several molecules have been 
reported to be added to enhance the survival and efficacy of 
the PGPR. Chitin, as a carbon source/substrate for the 
growth of chitinolytic bacteria, increased the chitinase pro-
duction when bacteria were grown in chitin amended 
medium (Gooday 1990). Chitosan, a nontoxic polymer ob-
tained from the chitin of crustacean shell wastes is not only 
the inhibitor of fungal growth but also activates genes en-
coding defense related proteins in plants (Hadwiger et al. 
1986; Lafontaine and Benhamou 1996). In addition, chitin 
oligomers which are released during degradation of chitin 
substrate by chitinolytic bacteria are also found to elicit 
plant defense reactions (Benhamou and Theriault 1998). In-
corporation of chitin in King’s medium B (KMB) supported 
the multiplication of P. fluorescens and enhanced chitinase 
activity when compared to the medium without incorpora-
tion of chitin (Viswanathan and Samiyappan 2001). Tomato 
plant treated with chitosan showed enhanced protection 
against crown and root rot caused by Fusarium oxysporum 
f.sp. radicis-lycopersici (Lafontaine and Benhamou 1996). 
Similarly, banana plants treated with P. fluorescens strain 

CHA0 along with chitin showed enhanced protection 
against BBTV besides improving the bunch yield (Kavino 
et al. 2008). 

 
PGPR strains and host plant specificity 
 
This specificity appears to be related to the different com-
position of the rhizosphere exudates depending on the plant 
species which affect the levels of colonization and subse-
quently the efficacy of the PGPR strains or the specific 
compounds present in the root exudates, that may stimulate 
the synthesis of secondary metabolites implicated in the 
plant growth promotion in the bacteria (van Overbeek and 
van Elsas 1995). Quantitative differences in phytohormone 
production by bacteria and the degree of sensitivity of 
plants to phytohormones are being suggested as the main 
reasons for this phenomenon (Glick 1995). Plant species or 
cultivars differ in their reaction to inoculation with bene-
ficial rhizobacteria (Fredrickson and Elliott 1987). A high 
specificity was observed between several growth promoting 
strains and the type of Prunus rootstock. Strains of P. fluo-
rescens EPS 383 and EPS 286 were only active in Almond 
x Peach hybrid GF 677, whereas strains EPS 231 and EPS 
588 were only active in Marianna 2624 (Bonaterra et al. 
2003). Similar results describing strain-host plant specifi-
city have been reported in other plant systems such as seve-
ral herbaceous crops (Howie and Echandi 1983: Kloepper 
1996). In strawberry, addition of LS 213 to plugs resulted in 
a greater enhancement of growth and yield in variety 
‘Camarosa’ than in ‘Sweet Charlie’ indicating better suitabi-
lity of this particular combination of bacterial isolates to 
variety ‘Camarosa’ and the differences in varietal response 
may occur within crops (Kokalis-Burelle 2003). Under tis-
sue culture conditions, bacterial treatments increased the 
dry weight of roots of the potato cultivar Norchip by up to 
600-1000% and Kennebec by 200-400% whereas it inhib-
ited the root weight of Chaleur by 40% (Nowak et al. 1995). 
Two PGPR strains protected cucumber and tomato from 
Cucumber mosaic virus (CMV), but different levels of pro-
tection on these two plant species were noticed suggesting 
that some level of specificity exists in the interaction be-
tween plant and bacteria (Raupach et al. 1996). 

 
IMPROVEMENT OF THE EFFICACY OF 
BIOFORMULATIONS 
 
Mixtures of microbial strains 
 
Generally, application of PGPR singly leads to inconsistent 
performance, because a single PGPR is not likely to be ac-
tive in all kinds of soil environment and agricultural ecosys-
tems. For plant-beneficial pseudomonads, strain mixtures 
and combinations with other bacteria or fungi often pro-
vided more-effective disease control than the application of 
an individual biocontrol pseudomonad alone (Pierson and 
Weller 1994; Duffy et al. 1996; Duijff et al. 1999; de Boer 
et al. 2003; Kavino et al. 2007). Another approach to obtain 
a successful microbial biocontrol consortium is to apply 
mixtures of biocontrol agents which display different dis-
ease-suppressive mechanisms that are complementary to 
each other. Cocktails of various Pseudomonas strains provi-
ded enhanced protection than a single organism (Thoma-
show and Weller 1998). Mixtures of PGPR strains signifi-
cantly reduced the severity of diseases compared to the non 
bacterized control in tomato, pepper and cucumber (Jetiya-
non and Kloepper 2002). de Boer et al. (2003) stated that 
combined Pseudomonas strains are effective in siderophore-
mediated competition for iron and induction of systemic 
plant resistance to control Fusarium wilt of radish. Dunne et 
al. (1998) applied a mixture of the DAPG producer P. fluo-
rescens F113 and a proteolytic rhizobacterium to enhance 
suppression of Pythium sp. mediated damping off in sugar 
beet. 
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Amendment of elicitors 
 
Involvement of chitin or chitosan in inducing systemic 
resistance alone or in combination with biocontrol agents 
has been demonstrated in few crops. Unique biological pro-
perties of chitin oligomers including their antifungal proper-
ties on various plant pathogenic fungi like F. oxysporum f. 
sp. radicis-lycopersici and P. aphanidermatum have been 
well documented (Leuba and Stossel 1986; El Ghaouth et al. 
1994; Lafontaine and Benhamou 1996). The chitin oligo-
mers are also found as potential elicitors of plant defense 
reactions (Leuba and Stossel 1986; Benhamou 1992). Ben-
hamou and Theriault (1998) found induction of resistance 
against Fusarium wilt by combining chitosan with an endo-
phytic bacterium, B. pumilus strain SE 34 in tomato. Chitin 
amendment drastically reduced the number of stubby root 
nematodes (Trichodorus spp.) (Ellis et al. 1998). Recent re-
ports have revealed the fact that mixing of chitin with 
PGPR increases the biocontrol efficacy against insect pest 
and pathogen in crop plants (Nandakumar 1998; Radja-
commare et al. 2002; Bharathi et al. 2004). Apart from in-
ducer of systemic resistance, chitin application enhanced 
the biocontrol of early leaf spot in peanut with a chitinolytic 
PGPR strain by providing a nutrient source for the applied 
bacterium and resident chitinolytic microbes (Kokalis-
Burelle et al. 1992). Also, chitooligosaccharides possess a 
variety of functional properties such as antibacterial, anti-
tumor and immuno enhancing effects (Jeon and Kim 2000). 
Recently, Kavino et al. (2008) reported that PGPR biofor-
mulation amended with chitin molecules enhanced the re-
sistance to BBTV infection in banana plants. 
 
CONCLUSIONS 
 
In-vitro biopriming of micropropagated plants with PGPRs 
can improve banana and plantains performance under stress 
environments and consequently enhances yield besides re-
ducing the disease incidence. The defense chemicals in-
duced upon treatment with PGPR bioformulations and 
growth promoting substances produced by rhizosphere and 
endophytic bacterial strains may play a significant role in 
reducing the disease incidence and thereby increasing the 
yield. The application of bioinoculants at the earlier stages 
of the propagation material will improve the health condi-
tion of the plantlets under varied environmental conditions 
and maintain the microbial population as rhizobacteria and/ 
or as endophytes by compressing the deleterious microorga-
nisms. It is concluded from the earlier demonstrations that 
the use of biocontrol agents in integrated management sys-
tems, either as plug and/or soil treatments or both, can 
significantly increase the production and productivity levels 
of banana and plantains and improve the soil status which 
ultimately enhances the health status of second season crop. 
In addition, the biocontrol agents contribute for the eco-
friendly management of pest and diseases for the sustaina-
ble horticulture. On the other hand, the selection of versatile 
plant growth promoting bacteria for the biopriming process 
is the primary aspect in the biohardening process. In ad-
dition, the development of a bioformulation either in the 
form of carrier based material or liquid based formulation 
play an important role in the commercialization of biohar-
dended plants. In this regard, the research work should be 
focused more on identifying the bioagents that are suitable 
for biological hardening of micropropagated materials as 
well as standardizing the methods of application. 

To exploit the potentiality of in vitro priming in tissue 
culture propagules, and to design novel strategies for in-
creased efficiency of plant micropropagation and plant 
productivity, biochemical and molecular mechanisms 
underlying in this process still need to be clarified. Recent 
developments in genomics, proteomics and metabolomics 
provide researchers with new molecular tools, allowing 
them to scrutinize earlier findings and look at the molecular 
interaction between plant-beneficial microbes, plant-biotic/ 
abiotic stress, plant-beneficial microbes-biotic/abiotic stress 

in a much more holistic manner than ever before (Delseny 
et al. 2001; Nowak and Shulaev 2003). The global profiling 
of gene and protein expression in plant tissues during bio-
priming could identify genes and proteins differentially ex-
pressed in response to the applied agents and identify sig-
naling networks leading to enhanced resistance to a specific 
abiotic or biotic stress. Metabolite profiling of plant inter-
action with beneficial microorganisms could identify che-
micals involved in the development of mutualistic inter-
actions and provide tools to manipulate this process in a 
rational manner. These tools are currently being largely 
used on model plant species and their application is essen-
tial for the development of effective priming methods 
tailored to many cultivated plant species and cultivars. 
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