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ABSTRACT 
Papaya (Carica papaya) is one of the healthiest and nutritious fruits in the world. This tropical plant contains diverse biologically active 
compounds of industrial and nutraceutical interest. As a climacteric fleshy fruit, papaya is highly vulnerable to the effects of the growth 
regulator ethylene, reducing its nutritional value and causing significant postharvest losses. To extend the shelf life of fruits several 
strategies are available to control the production of this gas during fruit ripening. Knowledge at the molecular level of the ethylene 
biosynthesis and action pathways permits to devise strategies to control ethylene metabolism in transgenic plants. The control of ethylene 
production is well documented in transgenic tomato plants and has been initiated in papaya. This paper reviews the molecular basis of 
ethylene metabolism in fruits and centers on papaya as an example of a climacteric fruit. 
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INTRODUCTION 
 
The fruit is an exclusive structure of angiosperms that 
develops from the ovary after fertilization. Fruit maturation 
and ripening are complex genetically regulated processes 
that undergo staggering changes in color, texture, flavor and 
aroma at the fruit flesh. These processes are the subject of 
permanent research at both the biochemical and genetic 
levels in several fruit crops with economic and/or nutritio-
nal values (Alexander et al. 2002). Papaya is a major fruit 
commodity reaching a production worldwide of 6708 mil-
lion metric tons in 2004. The top ten papaya producers are 
Brazil, Mexico, Nigeria, Indonesia, India, Ethiopia, Congo, 
Peru, China and Philippines (Tecson-Mendoza et al. 2008). 
Papaya is a climacteric fruit with a short shelf life and sub-
stantial postharvest losses caused mainly by fruit over-
ripening. It has been well established the central role of the 
gaseous plant hormone ethylene in fruit ripening as well as 
in the climacteric phenomenon. About 48% of overripe 
postharvest losses is assumed to be caused by ethylene 
(Paul et al. 1997). Papaya has the potential to be a model 
system for tropical fruits. A first draft of the papaya genome 
has been published, the genome is relatively small 372 Mbp, 
that is about three times the size of the genome of the model 
plant Arabidopsis thaliana (Ming et al. 2008). For instance, 
several genes involved in ethylene metabolism have been 
identified in this first draft of the genome (Paull et al. 2008).  
Papaya has also well-established transformation systems 
and the fruit generation time of about 12-16 months (Ascen-
cio-Cabral et al. 2008). 
 
 

PATHWAYS OF ETHYLENE BIOSYNTHESIS AND 
SIGNALING 

 
The ethylene biosynthesis pathway in higher plants is 
understood in great detail (Yang et al. 1984; Bleecker et al. 
2000). This olefin is synthesized in plants from methionine 
in three sequential steps (Fig. 1). Methionine is converted to 
S-adenosyl-L-methionine (SAM) by the SAM synthetase, 
then 1-aminocyclopropane-1-carboxylic acid (ACC) is 
generated from SAM via ACC synthase (ACS), and finally 
ethylene is generated from ACC by the action of the ACC 
oxidase (ACO). The genes encoding SAM synthetase, ACS 
and ACO are arranged in gene families. The papaya genome 
encodes fewer predicted genes for each one of these types 
of enzymes than the Arabidopsis and tomato genomes (Fig. 
1). The role of the enzymes catalyzing the last two steps has 
been the focus of attention in model plants as well as in 
several crop species. Although the last two reactions are the 
limiting steps in the biosynthesis of ethylene, there is evi-
dence that the genes involved in methionine synthesis and 
methionine salvage pathway are differentially expressed 
during ripening and in response to ethylene (Zegzouti et al. 
1999; Alba et al. 2005). 

Based on the respiration and ethylene biosynthesis rates 
during fruit ripening, fruits have been classified as climac-
teric or non-climacteric (Biale et al. 1981). Papaya as well 
as tomato, avocado, banana, apple are examples of climac-
teric fruits, they all show a burst in ethylene and CO2 pro-
duction during ripening. Ethylene is a key element in the 
ripening of climacteric fruits and two systems for ethylene 
production have been described. System 1 functions during 
normal growth and development and during stress respon-
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ses, and system 2 functions in floral senescence and fruit 
ripening (Fig. 1). System 1 is autoinhibitory, exogenous 
ethylene inhibits ethylene biosynthesis, and inhibitors of 
ethylene action can stimulate its production. Conversely 
system 2 is autocatalytic as it is stimulated by ethylene. In 
this case, both ACS and ACO mRNAs are induced by ethy-
lene (McMurchie et al. 1972; Barry et al. 2000). The effect 
of the reduction of ACS and ACO levels in transgenic 
plants is consistent with autocatalytic ethylene. Tomato, 
melon and apple carrying antisense constructs for ACS and 

ACO genes showed a decrease in ethylene production and a 
concomitant delay in fruit ripening (Oeller et al. 1991; 
Picton et al. 1993; Ayub et al. 1996; Shaffer et al. 2007). 
Afterward, autocatalytic ethylene synthesis triggers the 
ripening-associated genes expression that prompt fruit spe-
cific features as color, flavor, aroma and texture (Fig. 1) 
(Giovannoni 2004; Shaffer et al. 2007). 

The climacteric process may also be controlled at the 
ethylene perception step since some transcripts encoding 
ethylene receptors in tomato are induced by this hormone 
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Fig. 1 Ethylene biosynthesis pathway adapted to papaya fruit ripening. The pathway is based on Pech et al. (2008) and Lin et al. (2009): see text for a 
brief description. Established points of the pathway are indicated by arrows. During fruit ripening ethylene induce the climacteric ethylene production, 
which induce the autocatalytic ethylene production by expression of ACC and ACO genes (red arrows). In a second step an enhanced ethylene production 
induce the expression of genes involve in papaya climacteric respiration, aroma, softening, chlorophyll degradation and abscission (yellow arrows). 
Round boxes include de number of genes of each class present in tomato, Arabidopsis and papaya (Paull et al. 2008). 
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and during fruit ripening (Gutiérrez-Martínez et al. 2001; 
Kevany et al. 2007; Lin et al. 2009). The five ethylene re-
ceptors genes in tomato display distinct pattern of expres-
sion during development and in response to environmental 
stimuli (Cara et al. 2008). The ethylene receptors show 
similarity to bacterial two-component regulators, they are 
integral membrane proteins dimers associated to the endo-
plasmic reticulum (Bleecker et al. 1998). The genetic dis-
section of the triple response of Arabidopsis thaliana seed-
lings has been the way to establish the ethylene perception 
and signaling pathway in plants (Stepanova et al. 2000). In 
papaya three ethylene receptors have been predicted which 
is less than Arabidopsis and tomato, each one of them with 
a putative orthologue in Arabidopsis (Paull et al. 2008) The 
binding of ethylene to the receptors has a negative effect on 
the ethylene signaling pathway. A constitutive ethylene res-
ponse is generated by loss-of-function mutations in two or 
more of the ethylene receptor genes whereas hormone in-
sensitivity results from a dominant gain-of-function allele 
(Hua et al. 1998; Wang 2003). 

Downstream of the receptors a MAP-kinase cascade ini-
tiating with the MAP-kinase kinase kinase CTR1 is likely to 
launch the signaling pathway, yet a direct connection be-
tween CTR1 and a MAP-kinase kinase has not been estab-
lish (Ouaked et al. 2003). CTR1 functions as a negative 
regulator of the response and interacts directly with ethy-
lene receptors (Kieber et al. 1993; Clark et al. 1998; Gao et 
al. 2003). Downstream of CTR1 is EIN2, a positive regu-
lator of the response which shows homology to the Nramp 
family metal transporter but whose biochemical function is 
unknown (Alonso et al. 1999). A family of transcription 
factors, EIN3/EIL1, that function downstream EIN2 drive 
the ethylene regulated gene expression. The papaya genome 
encodes possible homologues for all these genes, one CTR1, 
one EIN2 and four EIN3/EIL1 (Fig. 2). 

EIN3/EIL1 transcription factors bind to the ERE ele-
ments present the transcription factor ERF1 that positively 
regulates ethylene-mediated gene expression (Fujimoto et 

al. 2000; Ohme et al. 2000). ERE elements are also fre-
quently found in the promoter regions of senescence and 
ripening genes (Chao et al. 1997; Solano et al. 1998); seve-
ral putative ERF1 homologues genes have been predicted in 
the papaya genome (Paul et al. 2008). Additional important 
regulators of the ethylene biosynthesis and signaling path-
ways are components of the ubiquitin–26S proteasome sys-
tem. The stability of several key elements in these pathways 
is controlled by protein turnover (Vierstra 2009). The speci-
fic components of the ubiquitin system regulating ethylene 
biosynthesis and signaling have not been searched in the 
papaya genome (EBF1,2 and ETP1,2; Fig. 2). 

 
MANIPULATION OF ETHYLENE BIOSYNTHESIS IN 
PAPAYA 

 
The last two reactions are the limiting steps in the ethylene 
biosynthesis pathway. ACS and ACO are encoded by multi-
gene families in higher plants. In tomato nine ACS and five 
ACO have been described. Expression analysis has revealed 
that four ACS and three ACO genes are differentially ex-
pressed in the tomato fruit (Barry et al. 2007). The papaya 
genome encodes seven ACS and a minimum of three ACO 
genes (Paul et al. 2008). Based on early observations ob-
tained with partial gene sequences, these genes may also 
display differential expression during fruit ripening. Two 
papaya ACS from cultivar ‘Solo Kapoho’ showed a dif-
ferential expression during fruit ripening, one transcript was 
detectable during ripening whereas the other in green 
mature fruit (Mason et al. 1997). Likewise, partial sequen-
ces obtained from ACS and ACO genes from papaya cul-
tivar Sunrise and Sunset showed expression during fruit 
ripening (Neupane et al. 1998). 

Entire genomic and cDNA sequences from papaya ACO 
have been isolated and their expression analyzed (Lin et al. 
1997; Chen et al. 2003; López-Gómez et al. 2004). Se-
quence comparison of two of the genes suggests that they 
correspond to the same gene from different cultivars, Cp-

Fig. 2 Ethylene signal transduction pathway adapted to papaya fruit ripening. The pathway is based on Yoo et al. (2009): see text for a brief 
description. Established points of the pathway are indicated by continued arrows and presumed points by no continued arrows. Arrows indicate a positive 
effect on signaling. Blunted arrows indicate points of negative regulation. Round boxes include de number of genes of each class present in tomato, 
Arabidopsis and papaya (Paull et al. 2008). 

ERE

Ethylene�responsive�genes

GENES

Papaya 1
Arabidopsis 1
Tomato 1

GENES

Papaya 1
Arabidopsis 1
Tomato 1

GENES

Papaya 3
Arabidopsis 5
Tomato 6

C2H4

ER

ERF1

EBF1,2 EIN3

EIN2 ETP1,2

CTR1

MKK9
MPK3/6

MKK?
MPK?

GENES

Papaya 4
Arabidopsis 9
Tomato 4

73



Transgenic Plant Journal 4 (Special Issue 1), 71-76 ©2010 Global Science Books 

 

ACO2 from ‘Tainong 2’ and Cp-ACO1 from ‘Maradol’ 
(Chen et al. 2003; López-Gómez et al. 2004). Expression 
analysis revealed that Cp-ACO1 is ripening-associated 
while Cp-ACO2 was specific for late stages of fruit ripening 
and leaf senescence. This difference in gene expression may 
uncover an intrinsic and specific feature on each papaya 
cultivar. Further expression analysis showed that Cp-ACO1 
transcript is detected in the pulp but not in peel at pre-
clicamacteric stage, then there is a dramatic increment of 
the messenger at climacteric stage in both pulp and peel fol-
lowed by a reduction at postclimacteric stage in both struc-
tures (López-Gómez et al. 2004). Cp-ACO1 and Cp-ACO2 
are induced by ethylene in fruits also are also detected after 
wounding (Chen et al. 2003; López-Gómez et al. 2004). 
These results suggest that Cp-ACO1 is developmentally 
regulated and that the ripening process may advance from 
within to outside the fruit. In addition, they imply the in-
volvement of ACO in the system 2 of ethylene production 
in climacteric fruits. 

Based on the results obtained for ethylene production 
inhibition in tomato, similar strategies have been developed 
in papaya (Table 1) (Oeller et al. 1991; Picton et al. 1993).  
Using antisense ACS constructs transgenic papaya plants 
were generated (Tecson- Mendoza et al. 2008). The fruits of 
transgenic and non-transgenic lines exhibited similar num-
ber of days from color break to full color. However, the 
number of days from full yellow to fully ripe stage was more 
pronounced and significant: 4-14 days for selected trans-
genic lines compared with 2 days for control non-transgenic 
papayas. Among the quality traits determined, softening 
was most significantly different between the transgenic and 
non-transgenic fruit. The papaya transgenic fruit was firm 
from 4 to 14 days after reaching full yellow stage at room 
temperature (28-30°C) while hardness on the non-trans-
genic fruit was lost 1 to 2 days after the full yellow stage. 

Recently, ethylene biosynthesis inhibition in ‘Maradol’ 
papaya was reported by ACO cosuppression (López-Gómez 
et al. 2009). In transgenic fruits, ethylene was reduced to 
about 60%, CO2 production was also found to be reduced, 
suggesting that the CO2 is associated to the ethylene pro-
duction. Furthermore, fruits do not present the climacteric 
behavior, providing evidence that ethylene causes the cli-
macteric in papaya as in other fruits (Lin et al. 2009). Al-
though the inhibition of ethylene was partial, some effects 
on the peel color and softening of the fruit were observed. 
In transgenic fruits, the color of the peel remained green 
longer than control fruits and the fruits stayed firm much 
longer; these features remained by 15 days post harvest. In 
addition, the usual brake stage of the fruit in the tree could 
not be observed. With time, a noticeable wrinkling of the 
peel of transgenic fruits was detected, probably related with 
a loss of turgor of the cells and after 15 days after harvest, 
even though the pulp still presented some firmness, the peel 
was very thin. This observation suggests that the process of 
ripening probably involves different mechanisms in pulp 
and peel and that ethylene could affect each tissue dif-
ferently (López-Gómez et al. 2009). It could also be con-
sidered that there are processes in the papaya ripening prog-
ram that are independent of ethylene as has been shown in 
tomato, melon and apple (Barry et al. 2007). The sense-
cence of leaves of transgenic papaya plants was altered too. 

Leaf abscission on the ACO cosuppression plants was 
delayed compared to the non-transformed plants; this delay 
was also detected in transgenic tomato (Picton et al. 1993). 

The overall growth and development of the transgenic 
ACO cosuppression plants grown on the field were similar 
as the non transgenic plants. Papaya is a fruit that normally 
ripens either on or off the tree. The transgenic fruits did not 
reach full maturity even after being 15 days off the tree; the 
fruits looked dehydrated and the experiment ended (López-
Gómez et al. 2009). Leaving the fruits on the tree for up to 
21 days had no apparent effect on fruit ripening, fruit did 
not ripe. When the expression of the ACO mRNA was 
assessed, a drastic reduction was detected by northern blot 
analysis. Thus, it is possible to infer that the expression of 
the enzymes such as those involved in peel color and pulp 
firmness may be regulated by ethylene in papaya (López-
Gómez et al. 2009). Taken together, all the information sug-
gests that papaya fruit is very sensitive to ethylene and that 
a reduction in ethylene levels could dramatically affect the 
progress of ripening. 

The phenotypes of the ACO cosuppression transgenic 
lines resemble the observations of 1-methylcyclopropene 
(1-MCP) treatments. Papaya fruits of the cultivars ‘Golden’, 
‘Gold’ and ‘Rainbow’ treated with 1-MCP showed a reduc-
tion in the ethylene production and a delayed fruit softness 
(Manenoi et al. 2006; Fabi et al. 2007). 1-MCP binds to 
ethylene receptors and strongly inhibits ethylene-mediated 
fruit ripening in climacteric fruit (Blankenship and Dole 
2003). Papaya fruits of cultivar ‘Golden’ treated with 1-
MCP were altered in the contents of the three main carote-
noids; all-trans-lycopene, all-trans-�-cryptoxanthin and all-
trans-�-carotene and the normal softening of the papaya 
fruit ripening was impaired. These alterations could not be 
reversed, so it seems that the deleterious effects of 1-MCP 
over the ethylene sensitivity are irreversible (Fabi et al. 
2007). Similar results were obtained when ‘Maradol’ papaya 
fruit was treated with a combination of 1-MCP and the 
ethylene releasing compound etephon (2-chloroethylphos-
phonic acid), coincident solubilization and depolymeriza-
tion of pectin polymerization associated to softening was 
dependent on ethylene perception (Señudo-Barajas et al. 
2009). The reduction of ethylene levels in the ACO cosup-
pression transgenic lines may imply that less ethylene is 
binding to the receptors, having therefore an effect on fruit 
ripening. In the case of apple cultivars, the rate of ripening 
correlates with the abundance of ethylene receptors (Tatsuki 
and Endo 2006). The 1-MCP effect on papayas although 
ethylene is present, the number of receptors blocked prevent 
their degradation (Kanavy et al. 2007). 

In spite of the reduction of ethylene production in trans-
genic papayas (López-Gómez et al. 2009), the fruit did not 
stay firm as long as the transgenic tomatoes (4 to 5 months 
after harvest) generated by similar approaches (Klee et al. 
1991; Oeller et al. 1991; Picton et al. 1993; Xiong et al. 
2005). This observation suggests that the ripening program 
in papaya may be different to that in tomato and other cli-
macteric fruits (Table 1) and that role of ethylene in the 
ripening of these types of fruits may not be quite the same. 
Although the inhibition of fruit ripening in papaya have pot-
ential commercial application, more studies are necessary to 
be certain that the inhibition of ethylene evolution does not 

Table 1 Comparison of different fruit phenotypes of transgenic lines altered in ethylene biosynthesis. 
 Climacteric 

respiration 
Softening Fruit color Shelf life 

time 
Aroma Reverted by 

ethylene 
Reference 

Tomato ACS Antisense Inhibited Inhibited Partially altered 90-120 days Inhibited Yes Oeller et al. 1991 
Tomato ACO Antisense Inhibited No inhibited Partially altered 28 days Unpublished Yes Murray et al. 1993 
Tomato ACC Deaminase Inhibited Inhibited No altered 121 days Unpublished Unpublished Klee et al. 1991 
Melon ACO Antisense Inhibited Inhibited No altered Unpublished Inhibited Yes Pech et al. 2008 
Apple ACO Antisense Inhibited Inhibited No altered 85 days Inhibited Yes Schaffer et al. 2007 
Papaya ACS Antisense Unpublished Inhibited No altered 14 days Unpublished Unpublished Tecson-Mendoza et al. 2008
Papaya ACO Cosuppression Inhibited Inhibited Altered 14 days Unpublished No López-Gómez et al. 2009 
Papaya 1-MCP Inhibited Inhibited Altered Unpublished Inhibited No Fabi et al. 2007 
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impair papaya fruit quality. 
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