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ABSTRACT 
Biological control of crop diseases and pests using microbial inoculants is being increasingly recognized as a viable, eco-friendly 
alternative that limits the use of chemical pesticides. A variety of microorganisms inhabit the rhizosphere, and among those certain strains 
of fluorescent pseudomonads have received much attention because of their potential to function as biological agents for the control of 
soil-borne pathogenic fungi that cause a number of diseases in crop plants. A number of strains of Pseudomonas fluorescens were isolated 
from the soil rhizosphere and other sources with a view to use them as biological control agents for different crops. The genetic diversity 
of P. fluorescens strains was assessed by two PCR-based molecular techniques, RAPDs and Rep-PCR. Both methods effectively assessed 
the diversity of the 15 P. fluorescens isolates. Though clustering of the various isolates into different groups was not similar, the unique-
ness one of the isolates, Pf-6, was demonstrated by the formation of a separate group in both methods. Rep-PCR appears to be more 
consistent and reliable for diversity assessment as the PCR primers are targeted to a specific region unlike RAPDs, which uses shorter 
oligonucleotide primers. 
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INTRODUCTION 
 
Biocontrol agents are emerging as an important component 
of integrated pest management (IPM) practices in many of 
the crops. Biological control of diseases and pests of crops 
using microbial inoculants is receiving increased attention 
as an environmentally friendly alternative to the use of che-
mical pesticides (Fenton et al. 1992; Cook et al. 1996; 
Sharifi-Tehrani et al. 1998). Exploitation of beneficial 
plant-microbe interactions in the rhizosphere can result in 
the promotion of plant health and have significant impli-
cations for low input sustainable agriculture applications 
such as biocontrol. Bacteria such as Bacillus and Pseudo-
monas, and fungi such as Trichoderma, have been deve-
loped as commercial biocontrol products (Keel et al. 1996; 
Haas and Défago 2005). 

A variety of microorganisms inhabit the rhizosphere, 
and among those certain strains of fluorescent pseudomo-
nads have received particular attention because of their 
potential to function as biological agents for the control of 
soil-borne pathogenic fungi and oomycetes that attack 
plants roots and cause considerable damage to crops world-
wide (Raaijmakers et al. 1997; Gardener et al. 2000; Landa 
et al. 2002; de Souza et al. 2003; Ramette et al. 2003; 
Weller et al. 2007). A wide range of important fungal dis-
eases in different crops such as root-rot of pea, tobacco and 
wheat, some root-associated fluorescent Pseudomonads 
produce and excrete secondary metabolites which are inhib-
itory to plant-pathogenic rhizosphere inhabitants, including 
fungi, bacteria, and nematodes (Haas and Keel 2003). The 
understanding of these molecular signaling processes and 
the functions they regulate is fundamental to promoting 
beneficial microbe-plant interactions, to overcome existing 
limitations and to designing improved strategies for the 
development of novel Pseudomonas biocontrol inoculants 
consortia (Mark et al. 2006). More recently, the develop-
ment of molecular techniques has yielded innovative alter-

native tools for understanding and demonstrating the me-
chanisms underlying biocontrol properties (Massart and 
Jijakli 2007). 

The production of antimicrobial secondary metabolites 
often represents a key factor in their ability to protect plant 
roots from fungal soil-borne diseases (Keel et al. 1992; 
Dowling et al. 1994; Sarniguet et al. 1995). It is important 
to identify the pathogens prevalent in the soil for the crop 
concerned and identify the enemies that will kill the patho-
gen (Ramette et al. 2006). There are many ways of en-
riching the soil microflora with the invasive and beneficial 
bacteria or fungi which will colonize on the pathogens in 
question or release chemical components that will not allow 
the pathogens to multiply. Many plant growth-promoting 
rhizobacteria (PGPR) which support plant growth in dif-
ferent ways. First, they prevent the multiplication of phyto-
pathogens by secreting some chemicals in the soil and also 
produce certain other chemical substances that stimulate 
plant growth by making available certain nutrients like Fe, 
P, etc. in the plant rhizosphere. 

The root-colonizing fluorescent pseudomonads produce 
a diversity of metabolites extracellularly with antimicrobial 

activity, some of which have a determinative role in disease 

suppression (Thomashow and Weller 1995; Haas and Keel 
2003: Haas and Défago 2005). Antibiotic compounds pro-
duced by fluorescent Pseudomonas strains play key a role in 
the suppression of various soil-borne plant pathogens 
(Schnider et al. 1995; Thomashow et al. 1995; Sharifi-The-
rani et al. 1998). Some PGPR can also produce enzymes 
that can lyse fungal cells. For example, P. stutzeri produces 
extra cellular chitinase and laminarinase, which could lyse 
the mycelia of F. solani. Some other PGPR synthesize anti-
fungal antibodies, e.g. P. fluorescens produces 2, 4-diacetyl 
phloroglucinol, which inhibits growth of fungi (Nowak-
Thompson et al. 1994). 

The important antibiotic compounds for which a major 
contribution to biocontrol has been demonstrated include 2, 
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4-diacetylphloroglucinol (DAPG), pyoluteorin, phenazines, 
pyrrolnitrin, cyclic lipopeptides, and hydrogen cyanide 
(Haas and Keel 2003; Haas and Défago 2005). In general, 
effective biocontrol pseudomonads produce at least one of 
these diffusible or volatile antibiotics. Some strains, such as 
P. fluorescens HA0 and Pf-5, produce multiple antibiotics 
with overlapping or different degrees of activity against spe-
cific pathogens (Haas and Défago 2005). 

The diversity of pseudomonads present in the soil also 
depends on the crop in the field and the type of metabolites 
that produce to arrest of the pathogens. Further differenti-
ation within the same class of pseudomonads based on the 
chemical component can be done with the help of molecular 
markers. Many molecular methods are used to detect the 
presence of soil-borne pathogens and also to assess the 
genetic variability among the different isolates (Mavrodi et 
al. 2001; Kumar et al. 2002). Application of molecular 
marker techniques has been useful for studying the genetic 
changes in the pathogen populations. Promising biocontrol 
pseudomonads may be identified functionally based on 
amplified ribosomal DNA restriction analysis (ARDRA) 
fingerprints (O’Sullivan et al. 1992; Gardener et al. 2000; 
Guo et al. 2007; Tran et al. 2008). In another study, Picard 
et al. (2000) differentiated 64 genotypes based on random 
amplified polymorphic DNA (RAPD) from a single 
ARDRA group of phlD-containing isolates from the roots 
and rhizosphere of maize. Of the several molecular markers, 
amplified fragment length polymorphism (AFLP) has been 
found to be a better method for detecting genetic variability 
among fungal pathogens (O’Neill et al. 1997). Gardener et 
al. (2000) identified 13 and 15 genotypes by BOX-PCR and 
Enterobacterial repetitive intergeneric consensus (ERIC)-
PCR, respectively, in a collection of phlD-containing strains. 
A pair of sequence characterized amplified region (SCAR) 
primers specific to P. fluorescens Pf29A was described by 
Chapon et al. (2003). 

A method referred to as rep-polymerase chain reaction 
(rep-PCR) is a specific bacterial genomic fingerprinting 
technique that is extremely reliable, reproducible, rapid and 
highly discriminatory for differentiation of bacterial isolates 
species, subspecies and strain level. When primers designed 
against these sequences are used in PCR, the reactions are 
termed Rep-PCR, Eric-PCR and Box-PCR and collectively 
they are referred to as Rep-PCR. Fractionation of the PCR 
products yields a complex fingerprinting pattern with which 
the bacterial isolates could be differentiated (Rademaker 
and de Bruijn 1997). Rep-PCR fingerprinting makes use of 
DNA primers complementary to naturally occurring highly 
conserved DNA sequences, present in multiple copies in the 
genomes of most Gram–negative and several Gram–posi-
tive bacteria. 

In the present investigation, 15 field and commercial 
isolates of P. fluorescens from fields having major legume 
and oilseed crops of research interest were genetically cha-
racterized using two PCR-based molecular methods, i.e. 
RAPD and rep-PCR. The various isolates were grouped 
based on the polymorphic pattern obtained with the two 
techniques. 

 
MATERIALS AND METHODS 
 
Chemicals 
 
All the chemicals used in this project were of molecular biology 
grade. Tris, CTAB, Proteinase K and Agarose were obtained from 
Sigma Chemical Co. (USA), dNTPs from GE Healthcare (USA) 
and Taq Polymerase from Genei (Bangalore, India). Standard solu-
tions and buffers were prepared according to the procedures given 
by Ausubel et al. (1999). 
 
Bacterial strains 
 
The different P. fluorescens isolates were collected from various 
agricultural research stations of ANGRAU growing on different 
crop plants (Table 1). The strains were purified as described by 

Johnson and Curl (1972). Isolates Pf-1 to Pf-11 were obtained 
from Shamshabad, Ranga Reddy District, Pf-12 from Agnee Co., 
Hyderabad, Pf13 from the Directorate of Biological Control, 
Bangalore, Pf-14 from Sree Ram Biotech, Hyderabad and Pf-15 
from Directorate of Oilseeds Research, Rajendranagar. 
 
Bacterial genomic DNA isolation 
 
Genomic DNA was isolated following the method of Ausubel et al. 
(1999). Six ml of bacterial culture grown overnight for 16-18 hr 
was used for isolation. The culture was centrifuged in a 1.5 ml 
Eppendorf tube for 2 min at 10,000 rpm. The pellet was 
resuspended in 0.567 ml of TE buffer by repeated pipetting. To 
this suspension 30 μl of 10% SDS and 3 μl Proteinase K (20 
mg/ml) were added, mixed well and incubated at 37�C for 1 h 
followed by addition of 100 μl of 5 M NaCl. To this mixture 80 μl 
of CTAB (10%) and NaCl (0.7 M) solution was added, mixed well 
and incubated at 65�C for 10 min. Equal vol of phenol/chloroform 
was added, gently mixed and centrifuged at 12,000 rpm for 7 min. 
The upper phase was taken to a fresh 1.5 ml tube, equal volume of 
chloroform: isoamyl alcohol (24: 1) was added, mixed well and 
centrifuged at 12,000 rpm for 5 min. This step was repeated twice. 
Finally, the supernatant was taken in a fresh 1.5 ml tube and the 
DNA was precipitated with 0.6 vol of isopropanol. After 
incubation at room temperature for 30 min, it was centrifuged at 
12,000 rpm for 7 min to pellet the DNA. The supernatant was 
decanted. The pellet was washed with 70% alcohol twice, air-dried 
and dissolved in TE [10 mM Tris-HCl, 1 mM EDTA, pH 8.0]. 

DNA samples were quantified by running on agarose gels 
along with standard DNA and staining with ethidium bromide. 
Samples were mixed with appropriate amount of 6X loading dye 
and electrophoreses on 0.8% agarose gel along with varying 
concentrations of � DNA (New England Biolabs, USA). The 
ethidium bromide stained gels were placed on a UV 
transilluminator (Syngene, USA) and visual comparisons were 
made with the standards to estimate the DNA concentration in 
samples. 
 
Analysis of data for RAPD and Rep-PCR 
 
1. RAPD analysis 
 
RAPD analysis was performed following the method of Williams 
et al. (1990) with necessary modifications. A total number of 40 
primers (OPA and OPC) supplied by Operon Technologies, USA 
were used in this study. Genomic DNA (25-50 ng/�l) of the P. 
fluorescens isolated was used as template and PCR amplification 
was performed in a 20 �l reaction mixture containing 2 μl tem-
plate, 2 μl of 10X PCR buffer, 2 mM MgCl2, 0.2 mM dNTPs, 1 μl 
(10 �mol) RAPD primer, 1 U Taq Polymerase (Genei, Bangalore). 
PCR reaction was carried out in a DNA thermocycler (Eppendorf, 
Germany) with a heated lid. The amplification conditions were as 
follows: Initial denaturation at 94°C for 5 min followed by 30 
cycles of denaturation at 94°C for 45 sec, annealing at 37°C for 45 
sec and extension at 72°C for 1 min. A final extension at 72°C was 
carried out for 8 min. After PCR, the samples were loaded onto a 
1.5% agarose gel along with standard markers of 100 bp and 1 Kb 
ladders (New England Biolabs, USA). 
 
2. Rep-PCR analysis 
 
In rep-PCR three families of repetitive sequences have been used, 
including the repetitive extragenic palindromic (REP) sequence, 
enterobacterial repetitive intergenic consensus (ERIC) and BOX 
element elements (Lupski et al. 1992). Rep-PCR fingerprinting is 

Table 1 Source of Pseudomonas fluorescens used. 
P. fluorescens strain Crop grown 
Pf-1-3 Tomato 
Pf-4-6 Brinjal 
Pf-7-9 Chilli 
Pf-10,11,15 Sunflower 
Pf-12-14 Multiple crops 

 

11



Genetic diversity in P. fluorescens using PCR. Ravicharan et al. 

 

a highly reproducible and simple method to distinguish closely 
related microbial strains, to deduce phylogenetic relationships and 
to study their diversity in different ecosystems (de Bruijn et al. 
1992). Three families of repetitive sequences have been studied in 
most detail, including the 35-40 bp repetitive REP sequence, thee 
124-127 bp ERIC sequence and the 154 Box element (Versalovic 
et al. 1994). The corresponding protocols are collectively referred 
to as rep-PCR. The primers are given in Table 2 where I is Inosine 
and were modified from those of de Bruijn et al. (1992). Primers 
ERIC R and ERIC F were as described by de Bruijn et al. (1992). 
Primer BoxA1R was as described by Louws et al. (1994). PCR 
amplification was performed based on Lupski et al. (1992) in a 20 
�l reaction mixture containing 2 μl template, 2 μl of 10X PCR 
buffer (Genei, Bangalore), 2 mM MgCl2, 0.2 mM dNTPs (GE 
Healthcare, USA), 1 μl (10 �mol) of each forward and reverse pri-
mer and 1 U of Taq Polymerase and 25-50 ng of bacterial genomic 
DNA. PCR was performed in a Master Cycler (Eppendorf, Ger-
many). The amplification conditions were as follows: Initial dena-
turation at 94°C for 3 min followed by 45 cycles of denaturation at 
94°C for 25 sec, annealing at 52°C for Box A1R and ERIC pri-
mers Box A1R and ERIC primers for 1 min and at 38°C for Rep 
primers, and extension at 72°C for 1 min. A final extension at 

72°C was carried out for 8 min. To confirm the repeatability of the 
results, these PCR experiments were repeated at least three times 
with two sets of independently isolated bacterial genomic DNA of 
each bacterial isolate. The amplicons were visualized under UV 
light after staining with ethidium bromide. 
 
Data analysis 
 
The experiments were repeated a minimum of three times to con-
firm the banding pattern and only those consistent bands on the 
gels were scored for data analysis. The gels were scored for the 
presence (1) or absence (0) of the corresponding band in the dif-
ferent local isolates. A score of ‘1’ was given for the presence and 
‘0’ for the absence of bands. The binary data generated was ana-
lyzed for genetic similarity using unweighted pair group arithmetic 
mean (UPGMA) program of NTSYSpc software, v. 2.11. The 
dendrograms obtained served as the basis for assessing the genetic 
relatedness of the P. fluorescens strains within the species. 
 
RESULTS AND DISCUSSION 
 
In the present work a total of 40 oligonucleotide primers 

Table 2 Primers used in Rep-PCR. 
Primer Sequence (5�-3�) Number of bases Recommended annealing temp (°C) 
BOXA1 R CTACGGCAAGGCGACGCTGACG 22 52 
ERIC R TGTAAGCTCCTGGGGATTCAC 21 53 
ERIC F AAGTAAGTGACTGGGGTGAGCG 22 53 
REP R IIIICGICGICATCIGGC 18 46 
REP F ICGICTTATCIGGCCTAC 18 46 

 

M1       C       1          2         3        4        5       6         7        8        9      10      11       12      13 14      15

M1         C        1        2        3        4         5      6        7       8         9      10      11     12     13    14      15
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Fig. 1 Agarose gel electrophoresis pattern of P. fluorescens DNA amplified with oligonucleotide primers in RAPDs. (A) OPA-7 ad (B) OPA18. PCR 
was carried out as described in the Materials and Methods and the amplicons were separated on 1% agarose gel in TAE buffer and viewed after ethidium 
bromide staining on a transilluminator. Lanes 1-15: Bacterial isolates Pf-1 to Pf-15 as indicated in Table 1. Lane M1; 1 Kb DNA ladder. Lane C: PCR 
control reaction with no DNA template.
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were used in RAPDs and 26 were found to be polymorphic. 
A representative agarose gel pattern obtained on RAPDs 
with two oligonucleotide primers is shown (Fig. 1A, 1B). 
The number of DNA bands amplified varied from 2-10 with 
each primer and the level of polymorphism was mostly 
100% in all cases. The amplified DNA fragments ranged 
from 300-6,500 bp. The number of polymorphic loci am-
plified varied with the different primers and isolates. 

All the bands were scored for their presence and ab-
sence in the 15 bacterial isolates and a similarity matrix was 
constructed using the UPGMA program. Cluster analysis 
carried out based on the similarity data generated from the 
15 isolates using the 26 primers accounted for a total of 160 
polymorphic DNA bands. The various P. fluorescens iso-
lates were divided into 5 major classes (Fig. 2). Three of the 
isolates i.e. Pf-6, Pf-14 and Pf-7 formed three separate 
groups by themselves. The other two major classes consis-
ted of different subgroups with Pf-7 and Pf-5 isolates, res-
pectively. The similarity among these standard isolates 
ranged from 0.42 to 0.95. 

A high level of polymorphism was seen in PCR with the 
REP, ERIC, and BOX set of primers (Fig. 3A-C). The num-
ber of DNA bands generated by PCR with the above-men-
tioned three primers varied in size from 300-6,500 bp and 
also in the total number of bands seen. The total number of 
polymorphic DNA bands seen in this method was almost 
similar to that observed with RAPDs. The percentage poly-
morphism with the three primers was 100% with REP and 
BOX primers but only 86% with the ERIC primer. A few of 
the bacterial isolates showed unique bands indicating the 
ability of Rep-PCR to distinguish many of the isolates. 

All the bands were scored for their presence and ab-

sence in the 15 bacterial isolates and a similarity matrix was 
constructed using the UPGMA program. The dendrogram 
obtained from the combined data from all three primer sets 
indicated that the similarity among these standard isolates 
ranged from 0.42 to 0.95 (Fig. 4). Three major groups were 
seen with the 15 isolates and Group I contained Pf-12 and 
Pf-6, Group II Pf-13 and Group III 12 different isolates in a 
number of subgroups. 

Biological control of plant pathogens has stimulated 
much interest in recent years with the growing trend in agri-
culture towards greater sustainability and public concern of 
the use of hazardous pesticides. There is now unequivocal 
evidence that toxic chemicals and antibiotics play a key role 
in the suppression of various soil-borne plant pathogens by 
antagonistic microorganisms. Among the variety of micro-
organisms inhabiting the rhizosphere, certain strains of fluo-
rescent Pseudomonads have received special attention due 
to their potential as biological agents for the control of soil-
borne pathogenic fungi and oomycetes that attack crop 
plants (Keel and Défago 1996; Haas and Défago 2005: 
Weller 2007). The fluorescent Pseudomonads colonize the 
roots and produce a diversity of extracellular metabolites 
with antimicrobial activity, some of which have a specific 
role in disease suppression (Thomashow and Weller 1995; 
Haas and Keel 2003). Genetic variability exists among the 
various isolates of Pseudomonads depending on the geogra-
phical locations from where these were collected, crops 
grown in a specific region and the agricultural practices em-
ployed in the location (Picard and Bosco 2008). 

DNA-based (genotypic) approaches (Saharan and Naef 
2008; Schütte et al. 2008) have increasingly been applied to 
microbial identification and classification. In fact, these 
molecular approaches have resulted in the birth of a new 
ecology subspecialty. Generally, these methods tend to be 
dependent on bacterial growth variables, more stable, less 
time-consuming and are very useful for determining phylo-
genetic relationships among microbial isolates and for 
assigning strains into specific groups. 

Biocontrol agents have been differentiated based on 
secondary metabolites (Haas and Keel 2003; Haas and 
Défago 2005; Couillerot 2009) and within subspecies using 
the latest biotechnological methods (Manceau and Harvais 
1997; Picard et al. 2000). Cellular protein profiles have 
been used to differentiate various P. fluorescens collected 
from different crop fields (Shanmugam et al. 2008). PCR-
based methods such as RAPDs and those using ITS primers 
have been extensively used (Kumar et al. 2002; Walsh et al. 
2003; Tran et al. 2008). The genomic fingerprinting method 
employed is based on the use of DNA primers correspon-
ding to naturally occurring repetitive elements in bacteria, 
such as the REP, ERIC and BOX elements, and the PCR 
reaction (Rep-PCR). Rep-PCR fingerprinting is a highly 
reproducible and simple method to distinguish closely 
related strains, to deduce phylogenetic relationships between 
strains, and to study their diversity in a variety of ecosys-
tems (Versalovic et al. 1994; Naik et al. 2008a, 2008b). 

The similarity data obtained with RAPD primers iden-
tified 5 major groups by cluster analysis, three of which had 
only a single isolate. The grouping does not appear to be 
based on geographic origin as Pf-6 and Pf-7 were from the 
same district but not from the same field. The commercial 
isolates Pf-14 and Pf-12 were in the same group but Pf-15 
was grouped with a number of other isolates. The genotypic 
and phenotypic diversity of P. flourescens could be based 
on the geographic origin or functional differences in the 
genome of the strains (Naik et al. 2008a; Silby et al. 2009). 
RAPDs are able to differentiate a large number of isolates 
and with the use of more primers it may be possible to get 
unique bands that can be used for fingerprinting and protec-
ting commercial P. fluorescens isolates. It is important to 
combine molecular diversity with the antibiotic-producing 
property of the isolates to properly identify the different 
strains prevalent in crop fields. 

The rep-PCR profiles P. fluorescens strains indicated 
that with this technique each set of subspecies could be 
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Fig. 2 Dendrogram based on similarity index data derived from the 
RAPD marker analysis on bacterial isolates Pf-1 to Pf-15. The dendro-
gram was constructed based on the RAPD marker data obtained with the 
15 P. fluorescens isolates by UPGMA method as described in the Mate-
rials and Methods. 
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easily distinguished as they gave unique profiles with each 
primer set. This technique thus could be used to identify the 
subspecies to which each of the isolates belonged which 
was not the case with RAPDs. 

The grouping of the 15 isolates obtained by RAPD 
analysis and Rep-PCR were different. However, isolate Pf-6 
was separated from the others in both methods suggesting 
the uniqueness of this isolate. Though the other two isolates 
Pf-4 and Pf-5 were isolated from the brinjal growing soil 
Pf-6 appeared to be unique which only points to the ecolo-
gical variation among the different fields where other crops 
could have been grown in different seasons contributing to 
such differences. Such molecular methods help to identify 
novel strains of pseudomonads which will be more effective 
as biocontrol agents in a particular region and for specific 
pathogens as was reported for black rot of tobacco (Thiela-
viopsis basicola) (Ramette et al. 2006). Though both 
methods could distinguish the 15 isolates, Rep-PCR may be 
better as it is targeted to a specific region of the genome and 
is highly reproducible (Binde et al. 2009; Palencia et al. 
2009; Rameshkumar and Nair 2009). Though the studies of 
Shanmugam et al. (2008) reinstated the importance of 
whole-cell protein analyses in characterizing pseudomonads 
and assessing their diversity, the isolates representing simi-
lar rhizospheres and geographic locations were generally 
distributed into different phenotypic clusters as influenced 

by unknown factors. Similarly the clustering in our studies 
based on DNA also was not representing the variations in 
the different fields or the crops grown. 

By converting the RAPD marker into a SCAR marker it 
may be possible to increase the reliability of this method 
although a number of such SCAR primers need to be tested 
for diversity analysis. It is important to correlate molecular 
diversity with functional diversity to assess the utility of 
these isolates as biocontrol agents for a particular crop in 
local fields which can then be extrapolated to the same crop 
in other fields or even other crops. 
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