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ABSTRACT 
Soil organic carbon (SOC) represents a major pool of carbon within the biosphere and acts as source and a sink for carbon and nutrients. 
Several simulation models have been developed and evaluated to estimate SOC stocks in different agroecosystems such as, CENTURY or 
ROTHC which are considered mechanistic, complex and based on qualitative concepts rather than measurable entities. Because of this 
complexity, it is important that simpler but mechanistic SOC models, like CQESTR (a contraction of C sequestration), be developed and 
tested under several soil and climate conditions. CENTURY and CQESTR have been evaluated to estimate SOC stocks in different 
management systems. Particularly in tropical soils, both models have estimated an increase in the SOC stocks in the no-tillage compared 
to conventional tillage system. However, it is necessary to improve the model accuracy including important variables to tropical areas like 
soil structure or soil mineralogy. 
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INTRODUCTION 
 
Soils play a vital role in the cycling of carbon (C) from the 
atmosphere to the biosphere. The soil C pool comprises soil 
organic carbon (SOC) estimated at 1550 Pg (1 Pg =1015 g) 
and soil inorganic C (SIC) approximately 950 Pg to 1 m 
depth. This total soil C pool of 2500 Pg is 3.3 times the 
atmospheric pool of 770 Pg and 4.1 times the vegetation 
pool of 620 Pg (Lal et al. 2006; Nair et al. 2009; Luo et al. 
2010). However, cultivation of virgin soils, under intensive 
soil management, results in large losses of SOC (20-50%) 
usually as a result of a reduced turnover of soil organic 
matter (SOM) and consequent increase in the CO2 emis-
sions (Leite et al. 2003; Cerri et al. 2007a). 

In tropical regions, where high temperatures and rainfall 
can increase SOM decomposition, the use of conservation 
management system, such as no-tillage and integrated crop 
livestock can reverse this process, favoring the recovery of 
SOC, increasing carbon sequestration, and hence, reducing 
the greenhouse effect (Lal 2004). Carbon sequestration is a 
natural process involving the net removal of CO2 from at-
mosphere and storage in long-lived pools of C. Such pools 
include the aboveground plant biomass, belowground bio-
mass such as roots, soil microorganisms and the relatively 
stable forms of organic and inorganic C in soils (Nair et al. 

2008). 
Simulation models can be useful for estimating, in 

short- and long-term, the influence of management prac-
tices on SOC stocks and C sequestration rate extrapolating 
these changes over large regions (Izaurralde et al. 2009). 
Among the several process-based models available, CEN-
TURY (Parton et al. 1987); ROTHC (Coleman and Jenkin-
son 1993) or EPIC (Williams and Renard 1985; Izaurralde 
et al. 2006) can be considered the most robust and widely 
used (Galdos et al. 2009). However, these models are often 
too complex and show multicompartmental structure based 
on qualitative concepts rather than measurable entities, and 
the required parameters or input variables are generally 
difficult to obtain (Shibu et al. 2006; Leite et al. 2009). 
Therefore, it is important that simpler but mechanistic SOM 
models, like CQESTR, be developed and validated under 
different soil and climate conditions (Lei et al. 2006). CEN-
TURY and CQESTR have been evaluated in tropical soils 
of Brazil especially under different tillage systems to esti-
mate soil carbon sequestration. The modeled and measured 
data were in good agreement for both models but the level 
of agreement would substantially improve if essential soil 
variable to tropical soils like soil structure and soil mineral-
ogy could be included. 
 

® 



Dynamic Soil, Dynamic Plant 5 (Special Issue 1), 1-6 ©2011 Global Science Books 

 

CHARACTERISTICS OF SOIL ORGANIC MATTER 
SIMULATION MODELS USED IN BRAZIL 
 
Process models are applied in order to permit examination 
beyond the limits set by measurements. The idea is that the 
exact process description of the models makes them ap-
plicable beyond the ranges of data behind them. This idea 
motivates the continuous development of models with a 
growing number of factors and complex internal structures 
(Palosuo 2008). 

According to Shibu et al. (2006), simulation models to 
predict SOM changes have been developed since the 1940s, 
ranging from simple exponential decay functions (Henin 
and Dupuis 1945) to more complex functions with time-
dependent relative decomposition rates in the 1960s (Kort-
leven 1963; Kolenbrander 1969). In the 1970s the first 
integrated soil-system models containing C/N cycling were 
reported by Dutt et al. (1972) and Beek and Frissel (1973) 
in the USA and Europe, respectively. These models were 
the first to combine C/N and related sub-processes of a soil-
crop-nutrient system into an integrated model (Shaffer et al. 
2001). Since then, a multitude of models has been deve-
loped, from simple regression equations to complex pro-
cess-based models which varied in terms of complexity and 
mathematical description of the biological and geochemical 
processes involved. Battle-Aguiar et al. (2010) have divided 
SOM simulation models into process-oriented multi-
compartment models (1), organism-oriented models (2), 
cohort models describing decomposition as a continuum (3) 
and a combination of model types 1 and 2. Process-oriented 
or compartment models can have a variable degree of com-
plexity, from the simplest case with no compartment to 
more refined, multicompartment models with each compart-
ment composed of organic matter with similar chemical 
composition of degradability. The development of a pro-
cess-based model not only allows the simulation of SOC 
stocks or even agricultural greenhouse gas emissions at a 
range of scales up to national or global level, but also the 
exploration of potential mitigation strategies (Giltrap et al. 
2010). CENTURY, ROTHC or CQESTR which have been 
evaluated in the tropical soils of Brazil are considered pro-
cess-based model, although there are differences between 
them associated with C pools and fluxes. 

CENTURY model was originally developed and tested 
on data sets mainly from grassland and wheat–fallow agri-
culture in the US Great Plains. The model represents plant 
growth, nutrient cycling, and SOM dynamics for both natu-
ral ecosystems (grassland, forest, and savanna systems) as 
well as agricultural systems. Soil nutrient cycling and SOM 
dynamics are simulated with greater detail, whereas plant 
growth and water movement are represented by relatively 
simpler submodels (Tornquist et al. 2009). Multiple pools 
or compartments, i.e. structural and metabolic related to 
plant residue and active, slow and passive associated to the 
soil, with specific residence times, are included. There is 
also a surface microbial pool, which is associated with 
decomposing surface litter. Active pool represents soil 
microbes and microbial products and has a turnover time 
ranging of months to a few years depending on the environ-
ment and sand content. The surface microbial pool turnover 
rate is independent of soil texture and it transfers material 
directly into the slow pool (turnover time of 20-50 years) 
which includes resistant plant material derived from the 
structural pool and soil-stabilized microbial products 
derived from active and surface microbe pools. The passive 
pool is very resistant to decomposition and includes phy-
sically and chemically stabilized SOM and has a turnover 
time of 400-1000 years (Ponce-Hernandéz 2004). Decom-
position of all pools is described according to first-order 
kinetics with different relative rate constants per pool that 
vary for different systems like arable crops, grass and forest. 
Main input variables requires: (1) monthly precipitation; (2) 
monthly average maximum and minimum air temperature; 
(3) soil attributes (texture, bulk density); (4) lignin, N, S, 
and P content of plant material; (5) soil and atmospheric N 

inputs and; 6) initial soil C, N, P levels. Although con-
sidered relatively complex, especially due to the number of 
input variable, CENTURY have been used successful when 
tested in several temperate and tropical systems. 

ROTHC model also is considered a model with a good 
accuracy and with several concepts similar to those in the 
CENTURY. It was tested in long term experiments on a 
range of soils and climatic conditions in Western and Cen-
tral Europe. In a majority of cases, ROTHC was evaluated 
on long-term experimental sites with detailed descriptions 
of the sites conditions and treatments (Coleman et al. 1997; 
Smith et al. 1997; Falloon and Smith 2002; Baran�íková 
2007; Ludwig et al. 2007). In the model, plant material 
enters the soil via litter fall. Part of this material is returned 
to atmosphere via CO2 (soil respiration) after passing 
through of five pools which includes inert organic matter 
(IOM), decomposable plant material (DPM), resistant plant 
material (RPM), microbial biomass (BIO) and humified 
organic matter (HUM). All pools, except IOM, decompose 
by first-order decay. As reported by Shibu et al. (2006), 
CENTURY and ROTHC shows different conceptual soil C 
pools (active, slow and passive in CENTURY and humus 
and inert in ROTHC), with widely different residence times 
(few months, 25 years, 1000 years in CENTURY, and 50 
and 50000 years in ROTHC). CENTURY's passive pool is 
larger than the inert organic matter (IOM) pool of RothC, 
both of which are resistant to decay. On the other hand, 
active and slow components in CENTURY and the BIO and 
HUM components in ROTHC are of the same order of 
magnitude. In another approach, Cerri et al. (2007) related 
that both models have similar structure, containing pools 
with a rapid turnover (month-year), moderate turnover 
(decadal) and slow turnover (millennial or inert). Input 
variables required to run ROTHC model are more easily 
obtained than CENTURY and includes mainly rainfall and 
open pan evaporation, air temperature and soil attributes 
(clay content and bulk density). 

CQESTR, pronounced sequester, a contraction of C 
sequestration has been in continuous development since 
2000. It is a process-based model considered simpler than 
CENTURY and ROTHC. With the goal of using readily 
available or easily obtainable inputs instead of detailed phy-
sical or chemical fractionation of C source, CQESTR was 
developed to simulate the effect of management practices 
on short and long-term trends of SOM and can be used to 
evaluate the environmental impacts of large-scale crop resi-
due removal from agriculture (Liang et al. 2009). The 
model is easy to use and have showed good accuracy in 
estimating soil C trends especially in temperate regions, 
since that, in tropical soils, its use just has been recently 
evaluated (Leite et al. 2009). In CQESTR, each organic 
residue addition is a tracked separately, without partitioning, 
according to its placement on the surface or buried in the 
soil. The model operates on a daily step and its major input 
variables include the number and thickness of soil layers, 
organic matter content and bulk density of each layer, 
above-ground and below-ground crop biomass, tillage 
operations, monthly average air temperature, monthly preci-
pitation, and nitrogen content of residues at the beginning 
of decomposition. Most of the required input data, inclu-
ding climate, is automatically extracted from existing crop 
management �les associated with the C-factor �les in the 
revised Universal Soil Loss Equation (RUSLE; Renard et al. 
1996). 

 
ESTIMATION OF SOIL ORGANIC CARBON 
STOCKS UNDER MANAGEMENT SYSTEMS USING 
CENTURY, ROTHC AND CQESTR MODELS 
 
Soil organic matter simulation model have been evaluated 
in different management systems, especially in temperate 
regions. However, in tropical regions, the number of studies 
can be considered limited and restricted to the use of the 
CENTURY model. In Brazil, Leite et al. (2004) studied the 
effect of four tillage systems (no tillage (NT), disk plow 

2



Modeling of carbon in tropical soils. Leite et al. 

 

(DP), heavy harrow (HH) and disk plow + heavy harrow 
(DPHH)) on total organic carbon (TOC) stocks estimated 
by laboratory methods and CENTURY model at an Ultisol 
located in the Minas Gerais state, southeastern region. The 
authors observed that tillage systems did not change the 
trend to decreasing stocks of carbon. Fifteen years after 
setting up the field experiment (2000), TOC stocks in the 
soil under NT, DP, HHDP and HH were 38, 32, 31, and 34 
Mg ha-1, respectively (Fig. 1A). This tendency continued 
mainly due to conventional plowed systems and in 2050 the 
projected TOC will be 34 Mg ha-1 in the soil under NT, and 
approximately 20 Mg ha-1 in the soils under DP, HHDP and 
HH. Despite these results, soils under NT system were the 
only ones to show a slight recovery in long term. 

Similarly to TOC, there was a reduction of the soil car-
bon stocks of the active, slow and passive pools even with 
adoption of NT system which shows that although the soil 
has been under NT for 15 years, no soil disturbance without 
cover crop management hardly help to improve an increase 
of TOC in acidic tropical soils (Figs. 1B-D). Comparing ob-
served and simulated TOC stocks, in 2000, it was observed 
that the difference in the NT system was very low (< 0.2%) 
and in the others systems, varied from 0.4 to 7% which is 
considered an excellent result. On the other hand, to active 
and slow pools there was an underestimation of the CEN-
TURY active and slow pools explained by the lack of im-
portant chemical processes in acid tropical soils not con-
sidered by the model such as organic matter–Al complex 
relevant in the control of the Al toxicity and therefore in the 

soil organic matter mineralization (Haynes and Mokolobate 
2001; Meda et al. 2001). 

Other works were developed under Brazilian conditions 
with CENTURY to verify the model accuracy. Galdos et al. 
(2009) used CENTURY in sites from northeastern and 
southeastern region of Brazil (and other one from South 
Africa) to quantify the effect of sugarcane residue manage-
ment in the temporal dynamic of soil C. The authors men-
tioned that the green cane management leads to higher C 
stocks in the long term than the system where crop residues 
are burned and that, considering all the sites, the model was 
accurate in simulating the temporal dynamics of soil C 
stocks under different trash, fertilizer and organic residue 
management (R2 = 0.89) with difference below 12%. How-
ever, the model tended to a underestimate where mineral 
fertilizer was applied which can be attributed to the faster 
SOM decomposition simulated by CENTURY due to nar-
rowing of the C/N ratio of the sugarcane litter when mineral 
N was added into the system. 

Torquinst (2009) also applied the CENTURY model 
associated to geographic information system (GIS) to 
examine changes in SOC stocks since the inception of agri-
culture in a representative area within the main agricultural 
region of Rio Grande do Sul State, in southern Brazil. The 
results showed that there was a marked decrease in C stocks 
after conversion to agriculture, with losses of about 50% 
from 1900-1980 and that a tendency of stabilization in the 
SOC stocks and a slight increase after conservation agricul-
tural practices such as reduced tillage and improved fertili-
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Fig. 1 Time variation of organic carbon stocks (TOC) (A) and active (B), slow (C), and passive (D) pools simulated by CENTURY in the no-till (NT), 
disc plow (DP), heavy harrow followed by disc plow (HHDP) and heavy harrow (HH) systems. Source: Leite LFC, Mendonça ES, Machado PLOA (2004) 
Simulating trends in soil organic carbon of an Acrisol under no-tillage and disc-plough systems using the Century model. Geoderma 120, 283-295, ©2004, with kind 
permission of Elsevier, Amsterdam, the Netherlands. 
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zation was observed in the 1980s. In 1992, greater increase 
was observed with the advent of no-tillage system. More-
over, the authors reported that the model performance for 
most soils (Ustropept, very clayey Hapludox and clayey 
Hapludox under woodlands) was good. However SOC 
stocks were underestimated in loamy Hapludox and the 
clayey Hapludox originally under grasslands. This can be 
explained by the lack of an explicit treatment of clay mine-
ralogy as related by the author and by Leite et al. (2004). 
Oxisols have mineralogy dominated especially by iron 
oxides such as these strongly bond to organic ligands, pro-
tecting, therefore, SOC from decomposition. 

In the Brazilian Amazon conditions, Cerri et al. (2007b) 
evaluated ROTHC and CENTURY performance to estimate 
SOC changes under forest-to-pasture. Several chrono-
sequences to represent different soil clay content, grass 
types and climatic condition were used. The models showed 
that, in the majority of the chronosequences, the conversion 
of Amazonian forest to well-managed pasture causes an 
initial decrease in the SOC stocks (0–20 cm) followed by a 
slow rise to levels exceeding those under native forest. Ac-
cording to the authors, all correlation coefficients (r) were 
greater than zero, showing positive correlation between 
simulated and measured values. Also, the calculated values 
close to zero for the mean difference between observation 
and simulation (M) indicate that consistent error was small. 
This can be corroborated by the root mean square error 
(RMSE), considered useful to compare errors in simulation 

made by different models (lower values of RMSE means a 
more accurate simulation) which showed, in the almost all 
cases, less than 20% (many around 10% or less). Therefore, 
based on the statistical methods, the authors reported that 
CENTURY and ROTHC showed a reasonable representa-
tion of the effect of land management on SOC stocks. 

Leite et al. (2009) estimated a decrease in the SOC 
stocks after conversion of native forest to cropland (tillage 
systems) using CQSTER model. At Coimbra, southeastern 
Brazil (Ultisol), SOC stock in 1985 (beginning of the expe-
riment) was 34 Mg ha-1, which represents a 47% decrease 
with respect to SOC stocks under the Atlantic Forest. This 
reduction was greater than the 37% decrease estimated by 
CENTURY for the same experiment (Leite et al. 2004). 
However, if soil bulk density in 1985 is used for calculation 
of C stocks, the CQESTR estimate would be only 3% 
greater than the Century estimate. As with many SOM 
simulation models, CQESTR does not consider tillage-
induced changes in bulk density; consequently, SOC stocks 
can be underestimated since bulk density generally decrea-
ses with tillage operations. The authors verified also that all 
tillage systems (no tillage (NT), reduced tillage (RTI: disk 
plow; RT2: heavy harrow)) and conventional tillage (disk 
plow+heavy harrow)) showed a decreasing trend in SOC 
stocks. In 2006, the values were 28.8, 23.7, 23.3, and 22.0 
Mg ha-1, for NT, RT2, RT1, and CT, respectively (Fig. 2). 
At Baixa Grande Ribeiro, Northeastern Brazil (Oxisol), 
CQESTR also estimated a decrease in SOC stocks after 
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Fig. 2 Soil organic carbon dynamic (0–20 cm) simulated by CQESTR in an Ultisol (A) under no tillage (NT), reduced tillage (RT1: disk plow; RT2: 
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conversion from the Cerrado vegetation to cropland. SOC 
stock measured under native forest was 48 Mg ha-1, while 
SOC stock was 42 Mg ha-1 at the beginning of the experi-
ment, in 1994 (Fig. 2). A 10% decrease in SOC stocks at 
BGR was lower than the 47% decrease at Coimbra. Ac-
cording to the authors, this is probably because BGR has 
been under conventional tillage for a shorter time (4 years) 
and also because of higher soil clay content at BGR, since 
the model uses a lower decomposition rate for heavier soil 
texture. Also, this is an Oxisol with high variable charge 
from Fe and Al oxides that could have stabilized organic 
matter as previously mentioned. SOC stocks decreased even 
after tillage systems adoption. In 2006, the values estimated 
by the model were 36, 34 and 32 Mg ha-1 for NT, RT, and 
CT, respectively, which means a reduction of 16, 20, and 
25% in SOC stocks since the beginning of the experiment 
which means that residue obtained from the cover crop (6 
Mg ha-1) added was not enough to increase SOC stocks. 

In relation to CQESTR performance, the authors ob-
served that, similarly to the others model tested in tropical 
soils, CQESTR underestimated SOC stocks for both sites. 
In spite of this, differences between simulated and measured 
values were considered small (Ultisol: 1.8-12%; Oxisol: 
1.25-4.6%) especially under conventional tillage, showing 
that input residue to the soil mainly from cover crop, should 
be better represented by the model. Therefore, more studies 
are needed to evaluate the CQESTR model’s performance 
for simulating SOC dynamics in tropical soils. Further ad-
justments, such as inclusion of clay mineralogy and organic 
matter interaction might be necessary to improve the 
model’s estimates. Nevertheless, the model showed accep-
table performance to predict SOC dynamic in two tropical 
soils of Brazil. 
 
CONCLUSIONS 
 
Simulation models have been useful to estimate soil organic 
carbon dynamic in several agroecosystems of Brazil. How-
ever, to improve the accuracy in tropical soils, these models 
should include input variables such as soil structure, mine-
ralogy and exchangeable aluminum and mechanisms like 
organ-mineral interaction. Also, some important strategies 
should be considered: 1) Creation of a database that provide 
organize information scattered in Brazil especially associ-
ated to climate variables, essential to simulate in local scale; 
2) Validation of simulation models for the different Brazi-
lian environment and production system especially in the 
regional scale using GIS and remote sensing; 3) Develop-
ment of simulation model from long-term experiment car-
ried out in Brazil. 
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