Organic Matter of the Anthropogenic Dark Earths of Amazônia

Beáta Emöke Madari*, Tony Jarbas Ferreira Cunha2 & Ricardo Soares3

1 Embrapa Rice and Beans, Rod. GO 462, km 12, 75735-000 Santo Antônio de Goiás-GO, Brazil
2 Embrapa Semi Arid, Rod. BR-42, km 152, 56302-970 Petrolina-PE, Brazil
3 Institute of Chemistry (GPEAA-GGQ-IQ), Federal Fluminense University (UFF), Outeiro de São João Batista, 24020-150 Niterói-RJ, Brazil

Corresponding author: * madari@cnpaf.embrapa.br

ABSTRACT

The anthropogenic dark earths (ADE, Terra Preta de Índio or terra preta arqueológica, as are often referred to in Portuguese) feature unique properties that are interesting not only from a pedological point of view but have important agronomic and economic relevance. Among other properties, the organic matter (SOM) of these soils is considerably different from that of other mineral soils. Besides the quantity of SOM, its origin, composition and, consequently, function in the soil is different. Carbonized biomass (pyrogenic carbon) is a principal constituent of ADE that was, to our best knowledge, gradually incorporated into these soils, 4 to 10 thousand years ago, by native dwellers of the Amazon region. The carbon of pyrogenic origin was not only accumulated in ADE, but it also played important role in the transformation of organic matter and the humification process. As a result of this, the SOM of ADE is relatively stable, compared to the SOM of adjacent ferralsols, and at the same time it has chemical reactivity that is the major responsible for the higher cation exchange capacity and good buffer properties of these soils. These properties have very important environmental and agronomic relevance in the tropics due to organic carbon conservation in the soil and enhanced soil fertility. The ADE soils are excellent model for the development of modern soil fertility management practices.

Keywords: physical and chemical characteristics of soil organic matter, pyrogenic carbon, soil color, soil fertility, soil organic matter fractions, soil structure, Terra Preta de Índio

Received: 3 February, 2011. Accepted: 23 July, 2011.

INTRODUCTION

The organic matter in mineral soils (SOM) rarely exceeds 8%, except some soils in specific climatic or terrain conditions, like Organosols that contain more than 20% organic matter, by definition (IUSS Working Group WRB 2006) to a minimum depth of 40 cm (Embrapa 2006). The distribution of organic matter in the soil is variable, in depth (vertically in the soil profile) and horizontally. This distribution of the C in the soil is dependent on various factors, like soil type, terrain morphology, soil cover or use, climatic conditions, predominant natural vegetation, soil management practices, among others. The quality of organic matter is also of great importance, it is source of nutrients and energy for microorganisms and conditions soil functions. Among these generally great emphasis is given to water retention, soil structure and its stability, porosity, retention and availability of macro- and micronutrients due to the fact that SOM levels are regulating cation exchange capacity (CEC), principally in soils under tropical climate whose mineral matrix is dominated by low activity clay minerals (kaolinite, iron and aluminum oxides like geothite and hematite). In the soils of Brazil SOM can contribute to CEC even in 80%, considering the whole soil matrix. Hence, variations in the quantity and quality of SOM are able to have a great effect on soil properties and processes. SOM also has an important role in nutrient cycling whose dynamics is still little known. For this reason, SOM management with focus on its conservation and improving its quality is fundamental for the maintenance and sustainability of tropical agroecosystems.

A great proportion of the soils that are suitable for agricultural production at the Amazon Region are acid with low CEC and, consequently, low fertility and production potential, that is a limiting factor for environmental and economic sustainability.

In this same region can be found the so-called anthropogenic dark earths (ADE; also known as Terra Preta de Índio - TPI or simply Terra Preta) that feature an anthropogenic A horizon, also called archaeo-anthropopedogenic horizon.
denomination proposed by Kämpf et al. (2003). Different hypothesis were proposed as possible processes of formation of TPI but the actually most accepted is that these soils were formed by pre-historic populations (Woods and McCann 2001); however, there is still no consolidated opinion whether their activity was intentional (Neves et al. 2003). The areas where TPI occur now were places of pre-historic villages where great amounts of residues of vegetal and animal origin, together with residues of cooking (fire) places (ash and charcoal). More recently, Birk et al. (2011), using biomarkers (5b-cholestan-3b-ol) in TPI compared to reference soils, showed that faeces were deposited on TPI and contributed to their genesis. This great quantity of organic matter contributed, most probably, to the formation of highly fertile soils with high levels of stable SOM of pyrogenic origin and also high levels of available phosphorus, calcium, magnesium and zinc (Kern 1988; Kern and Kämpf 1989; Kern 1996; Costa and Kern 1999). Apparently, in TPI there are proper micro-ecosystems that retain and make macro- and microelements available for a longer period of time than adjacent soils with no archaeo-anthropogenic horizon, even under tropical climate and agricultural use.

Sombroek (1966) mentioned the so-called Terra Mulata (TM) that are soils featuring high levels of P and carbon (C) but don’t have artifacts, however their formation was apparently associated to anthropogenic activity. It is believed that areas of TM had been utilized for agriculture and TPI, where high quantity of artifacts can be found, had been the actual day to day living habitat, the village. According to McCann et al. (2001) TMs have similar levels of organic C compared to TPI but lower levels of available P and Ca. Examples of TM around the Negro and Urubu Rivers had similar productivities than TPIs of the same regions (Lehmann et al. 2003). Because TM was also formed by human activity and has similar characteristics to TPI, Kämpf et al. (2003) suggested the use of the term archaeological horizon, for all Amazonian anthropogenic soils.

The TPI are not a homogeneous group of soils regarding fertility and production potential. There might be great differences even between TPIs of a region and there is a great variability within one TPI site (Lehmann et al. 2003). Despite these differences some important soil fertility properties are shared by most TPI: high organic C levels, SOM with particular physical-chemical properties and high levels of available P, Ca and micronutrients, compared to adjacent soils like Oxisols among others.

One of the responsible factors for the different behaviours of these anthropogenic soils is the higher organic C content and principally the different quality of this organic C with different origins. The objective of this paper is to describe the organic matrix of TPI in comparison to that in adjacent soils that have no archaeological horizon, and to investigate the effect of the differences in SOM on the fertility properties of these soils.

Characterization of the archaeological horizon of ADE

The characterization of soil horizons that had undergone anthropogenic influence comparing with similar horizons of similar but not anthropogenic soils is important to observe possible functions of SOM in TPI. Hence, characteristics that are different between TPI and adjacent soils are described below.

Soil color. The color of TPI in the archaeological horizon is, in general, as the name of these soils indicate, is black to very dark brownish grey (5YR 2.5/1; 7.5YR 2.0 to 3/1; 10YR 2.0 to 3/2) (Kämpf and Kern 2005), different from the color of adjacent non-anthropogenic soils whose color is generally determined by the color of the clay minerals of the soil matrix. This very characteristic property of TPI is due to the quantity (Kern and Kämpf 1989) and quality of the SOM present in these soils. Data from 56 soil profiles showed that while the mean organic C concentration in the surface 20 cm of TPIs was 30 g kg⁻¹ (CV=66%), in non-anthropogenic soils of the Amazon it was 17 g kg⁻¹ (N=47, CV=58%) at the same depth (Madari et al. 2003). In a general manner, the correlation between soil color and SOM concentration is low (r = 0.31; Schulze et al. 1993), however, there is a tendency for having darker color in SOM rich soils. In TPI the distribution between the chemical SOM fractions is different from that in adjacent soils. In TPI there are more stable fractions, that are also more stable and persistent in the soil (humin and humic acids (HAs)), predominately in relation to the more soluble fractions (fulvic acids). The stability of organic matter is related to some molecular structures that are also responsible for the stability and persistence of SOM in TPI for a longer period of time as these are less sensitive to microbial decomposition. These molecular structures are, for example, hetero-poly-condensed, amorphous structures with high concentrations of double conjugated links (Kumada 1965) and poly-aromatic structures. The more stable fractions of SOM, which predominate in TPI, have darker colors than the less stable ones (fulvic acids and low molecular weight organic acids).

Soil structure. Chemical aspects of sustainable soil fertility management are very important but soil management for adequate physical status is equally relevant. The physical management of soils is highly relevant to soil fertility, agricultural productivity and the quality of the environment (Lal 2000). Soils under tropical climate feature, in general, good structure under natural vegetation. Examples are the kaolinitic clayey Ferralsols. However, under inadequate management, like frequent plowing, the originally well developed structure rapidly deteriorates, leading to crust, compaction and subsequent erosion. The ADE also feature excellent physical properties. The bulk density of TPI in the superficial soil layers of the archaeological horizon is generally low (1.08 ± 0.23 g cm⁻³, N = 10), the porosity (58.83 ± 9.07%, N = 10) and water retention capacity is high (Teixeira and Martins 2003).

An interesting question is the effect of the pyrogenic carbon on soil physical properties. On one hand char, due to its porosity and, consequently, to its high surface area, can significantly improve water retention, especially in sandy soils. On the other hand, the aromatic structure of char that has hydrophobic characteristics may reduce water penetration into the pore space of soil aggregates, that way increasing aggregate stability (Glaser et al. 2002). Probably, due to the mixture of these characteristics the effect of charcoal on the physical properties of medium textured soils in most of the cases is not detectable and in clayey textured soils is negative (Tryon 1948). Almendros et al. (1992) described the evolution pathway of humic substances as affected by fire that could significantly contribute to the formation of soils with hydrophobic characteristics (repellent to water). Hence, the high concentration of pyrogenic C in association with its physico-chemical properties, such as high stability and reactivity at the same time (Zech et al. 1990; Golchini et al. 1997; Schmidt et al. 1999; Poirier et al. 2000), in fact may have contributed to the improvement of TPI properties, not only the chemical but physical ones as well.

Soil fertility. Compared to non-anthropogenic soils TPI, in general, feature clear tendency to have higher concentrations of organic C, Ca and Mg, higher pH and base saturation and smaller concentrations or non of exchangeable Al. These properties of TPI are responsible for the better fertility and production potential of TPI. Hence, however there is some overlapping between the fertility properties of TPI and adjacent soils, TPI generally feature higher fertility (Madari et al. 2003). The capacity of the soil to adsorb nutrients (Ca, Mg, base saturation), diminish toxicity of Al and the stabilization of pH are processes that are fundamen-
tally controlled by organic matter. Pabst (1992), investigating the principal differences between TPI and regular Ferralsols, also identified that those attributes that are associated with SOM (pH, organic C concentration, “humus structure” – stability to microbial decomposition, N, base saturation, CEC and available P) are the ones that make the most difference. While SOM concentration in TPI is a relevant factor, its composition and characteristics also contribute to the higher fertility of TPI.

The organic matter of ADE

Processes of stabilization and mobilization affect the accumulation and decomposition of SOM and the equilibrium between these processes are of extreme importance for the formation and maintenance of the fertility of soils under tropical climatic conditions. These processes regulate reactivity and reactivity, or in other words, the capacity of SOM to interact with other materials and to be protected against chemical or biological decomposition (Sollins et al. 1996). The higher accumulation of organic C in TPI, compared to adjacent soils, indicate that at least a part of its organic matter has characteristics that give stability or little availability to the C associated to it. On the other hand, fertility data on TPI indicate that the SOM in these soils also has elevated chemical reactivity compared to the soils that have no archaico-anthropopedogenic horizon. In the forthcoming paragraphs the characteristics of the different SOM fractions will be described as they are in TPI.

Chars. Chars are generally reported as chemically inert and hydrophobic materials and, due to their high porosity, have elevated chemical reactivity compared to the soils that have no char formation. Fearnside et al. (2004) investigated the “priming” effect of pyrogenic C and the mineralization of glucose. According to these authors the mineralization of the pyrogenic C was stimulated by the addition of glucose to the soil and, vice versa, the mineralization of glucose was stimulated by the presence of the pyrogenic C. The authors supposed that the effect of the carbonized material occurred because of its high superficial area that served as medium for microbial growth and consequently activity rather than because of higher availability of C since pyrogenic C, being highly aromatic, is not readily available as energy source. Hence, charcoal, however is relatively inert and highly stable in the soil, depending on the conditions of its formation and on the transformations it undergoes, it may have the capacity to contribute to enhance the chemical, physical and consequently biological properties of soils.

The light fraction of SOM. There are only a few studies on the contribution of pyrogenic C to the light fraction of SOM in TPI. This fraction is separated on the basis of the density of soil components after their total dispersion. Glaser et al. (2000) determined pyrogenic C in three density fractions: d < 2.0 g cm⁻³ (light fraction), d = 2.0-2.4 g cm⁻³ (medium fraction) and d > 2.4 g cm⁻³ (mineral matrix of the soil to which organic C is associated by chemical and physical mechanisms) in TPI and adjacent non-anthropogenic Ferralsols. The observed that the contribution of pyrogenic C to the soil mass was higher in TPI in each separated fraction, being the largest in the medium fraction. In the Ferralsols the distribution of the pyrogenic C between the fractions was more balanced.

It is possible that the quantities of pyrogenic C were super estimated by the determination of benzene-carboxylic acid with gas chromatography after partial oxidation of the pyrogenic C with nitric acid (Derenne and Largeau 2001). Nevertheless, their results showed the expressed presence of pyrogenic C in the light fraction of SOM of TPIs indicating that the largest proportion of pyrogenic C in TPI is of particulate nature and part of it is physically not protected by soil structure, however, it can be also found in physically or chemically (organo-mineral complexes) protected forms.

The light fraction is one of the most labile ones with a high pre-disposition to microbial decomposition, especially the free light fraction that is not physically protected by soil structure. In relation to chars, and specifically in the case of TPI, there is no exact information about physical protection in its particulate form. There are indications, as mentioned above, that it occurs in protected and non-protected forms as well. The pyrogenic C in particulate form, however, has a much longer half-life in the soil than non-pyrogenic particulate SOM, if not lost by erosion. The fact that it is more preserved even in the early thousands of years indicates its higher reactivity. However the forms of protection of pyrogenic C and its chemical structure is not fully understood, it can be confirmed, with great certainty, that its higher stability is due to its molecular structure and morphology that varies according to its origin (Poirier et al. 2000). Pyrogenic C that was formed from lingo-celulosic materials tends to have microstructure with basic structural units arranged in a little oriented manner. Formed from materials that have low oxygen concentration like plant waxes or hydrocarbons as fossil fuels they feature microstructure where the basic structural units are arranged in a concentric manner (Poirier et al. 2000; Derenne and Largeau 2001). The basic structural units, of nanometric scale, are made of condensed polyaromatic structures with low H:C ratio that are highly resistant to biotic and abiotic degradation.

More recently, Liang et al. (2010) found that the presence of pyrogenic C (black C) led to more rapid incorporation of freshly added organic matter into aggregate and organo-mineral fractions, the physically and chemically protected organic matter, respectively.

Humic substances. The study of the humified organic matter has recently gain new importance due to its role in environmental protection. The disequilibrium caused by the
elimination of the natural vegetation and the introduction and inappropriate practice of agricultural activities promoted soil degradation and diminished its capacity to sustain life in long term (Mielniczuk et al. 2003). The humic substances are among the most important SOM fractions, having fundamental role in the sustainability of soil functions. The largest proportion of humic substances represent a pool of SOM that has small transformation or degradation rate or is recalcitrant and makes 70-80% SOM (Stevenson 1994). These have important role in C accumulation and to retain and make available plant nutrients.

For these reasons the distribution of C among the fractions of humic substances and their molecular characteristics in TPI will be discussed in detail further in the text, always compared with non-anthropogenic soils.

The distribution of C among humic substances fractions in ADE

The most abundant humic fraction is the humin, both in TPI and non-anthropogenic soils under tropical climate. The TPI, however, has a larger proportion of C in the HA fraction (Fig. 1) than in the fulvic acid fraction, in this being different from non-anthropogenic soils. Hence, in TPI those humic fractions (HAs and humins) that are conventionally considered to be chemically more stable in function of the presence of aromatic groups and benzene rings, higher degree of polymerization and lower susceptibility to microbial decomposition predominate. In Fig. 1 it is also presented that TPI has a great proportion of C (~50%) in the whole soil profile) that is not oxidizable by the Walkley-Black method (Nelson and Sommers 1996). This C is chemically stable and consequently has longer persistence in the soil.

The variability of the distribution of the three humic fractions (fulvic acids, HAs and humin) of the humic substances within one TPI site is however great (Table 1), and the fulvic acid fraction has the largest and the humin the smallest variability of all. This variability, similarly to those observed in the case of the fertility properties of TPI, is probably due to the proper anthropogenic origin of these soils that is the cause of the uneven and irregular deposition of the carbonized material within these sites.

Composition and physical-chemical properties of the HA fraction of ADE

In the profile of TPI (Fig. 1) total and organic C showed significant correlations to CEC and with the sum of bases (Table 2). Among the chemical fractions of SOM only the HA fraction correlated with these fertility parameters. These data demonstrate the importance of the HA fraction in conditioning some soil fertility attributes in the studied TPIs. Also suggest that to be able to better understand the effect of SOM on the fertility of TPI it is important to investigate, among other aspects, the molecular composition and physical-chemical characteristics of the HA fraction.

To demonstrate the principal differences between the HAs of TPI and non-anthropogenic soils, the respective physical-chemical and molecular properties, that define their function in the soil, will be discussed in the following. The properties that determine the function and transformations of the HAs are their stability, reactivity and susceptibility to mineralization. The stability of HAs in relation to decomposition and leaching is important for the accumulation and persistence of organic C in the soil. The reactivity of HAs is responsible for the interaction of these molecules with other soil components via the formation of organo-metallic complexes whose linkages between the mineral and organic matrix of the soil favor organic C accumulation and stabilization. Via adsorption and desorption reactions occurs the retention and availability of plant nutrients. Via mineralization of HAs, the liberation of nutrients occurs and also the diminution of organic C concentration in the soil. The stability of HAs is determined, principally, by their aromatic and hydrophobic structures. Their chemical reactivity

![Fig. 1 Anthropogenic dark earth (Terra Preta) profile at Hatahara Farm, Iranduba, Amazonas State. Concentration of carbon in the chemical fractions of soil organic matter (n = 3). Error bars indicate standard deviation. FA: fulvic acids, HA: HAs, Total of fractions: HA+FA+Humin.](image-url)
is determined by the concentration of acidic functional groups on the molecular surfaces. The susceptibility of HAs to mineralization depends, greatly, on the quantity of hydrophilic aliphatic structures in their molecular associations (Fig. 2).

The principal differences between the HAs of TPI and non-anthropogenic soils, is presented in Tables 3 and 4. The methods used to obtain the indices presented in the respective tables are listed in Table 5 (Cunha 2005). The localization of the respective TPIs and adjacent non-anthropogenic soils is described in Fig. 3.

The humification process results in ever-increasing molecules or molecular associations, increasing the degree of condensation and concentration of free organic radicals. The different humification indices that were obtained via degradative, basically chemical, and non-degradative physical, principally spectroscopic techniques, methods indicated higher humification degree and higher concentration of aromatic poly-condensed structures in HAs extracted from TPIs. The HAs of TPI are more resistant to thermo-degradation, compared to the HAs of adjacent soils, that is expressed by the thermogravimetric index (TGI). This property indicates that the HAs of TPI have greater proportion of stable structural elements such as condensed aromatic nuclei. The index of aromaticity (IA), obtained by infrared spectroscopy, and the distribution of C among the structural elements of humic substances determined by 13C nuclear magnetic resonance spectroscopy (Tables 3, 4) confirmed a greater proportion of aromatic structures in the HAs of TPI. The E_4/E_6 ratio that has an inverse relation to the condensed aromatic structures in the HAs of TPI.

The edaphic and climatic conditions that control humification processes are similar for TPI and adjacent soils. The difference is in the higher concentration of char or pyrogenic C in TPIs. The pyrogenic C is considered inert and little susceptible to decomposition but, as mentioned before, it also undergoes some degradation and transformation in the soil. Trompowsky et al. (2005), using 13C direct polarization magic angle spinning nuclear magnetic resonance (DP/MAS NMR) on HAs extracted from charcoal made from eucalypt wood showed that C was present in two principal structures: aromatic (aryl-C, condensed and deficient in H, at 130 ppm) and carboxylic (-COO$^-$, at 169 ppm) groups and a significant part of the carboxylic groups was signify low levels of N incorporation and low degree of humification. In the case of TPI, however, the C:N ratio of the HAs falls within the range considered “normal” for stable organic compounds in soils that is between 10 and 12 (Stevenson 1994). It means little secondary mineralization of SOM (Rossel et al. 1989). The low (8.8) C:N ratio obtained for the non-anthropogenic soils suggests lower biological stability and the possible presence of secondary mineralization of SOM. The higher total acidity and the presence of carboxylic radicals together with the higher O:H ratio of the HAs of TPI indicate the higher concentration of acidic functional groups that are responsible for the chemical reactivity and, consequently, for the interactions of HAs with other soil components.

Hence, the HAs of TPI are more stable and at the same time have higher chemical reactivity than those in adjacent, non-anthropogenic, soils. Through their physical-chemical and molecular structural properties the humic substances formed in TPI facilitate organic C accumulation and higher fertility and production potential, so much desired in soils under tropical climate where soils without this organic matter are often obstacles to sustainable agricultural production.

The origin of the molecular structural characteristics of the HAs in ADE

The edaphic and climatic conditions that control humification processes are similar for TPI and adjacent soils. The difference is in the higher concentration of char or pyrogenic C in TPIs. The pyrogenic C is considered inert and little susceptible to decomposition but, as mentioned before, it also undergoes some degradation and transformation in the soil. Trompowsky et al. (2005), using 13C direct polarization magic angle spinning nuclear magnetic resonance (DP/MAS NMR) on HAs extracted from charcoal made from eucalypt wood showed that C was present in two principal structures: aromatic (aryl-C, condensed and deficient in H, at 130 ppm) and carboxylic (-COO$^-$, at 169 ppm) groups and a significant part of the carboxylic groups was

Table 3 Indices that describe composition and physical-chemical properties of HAs in Terra Preta (TPI) and adjacent non-anthropogenic soils (Non-TPI) of the Amazon (Cunha 2005).

<table>
<thead>
<tr>
<th>Soils</th>
<th>TGI</th>
<th>IA</th>
<th>Total acidity, cmol, kg$^{-1}$</th>
<th>Carboxylic acidity, cmol, kg$^{-1}$</th>
<th>O:H</th>
<th>E_4/E_6</th>
<th>FOR, Spin g$^{-1}$</th>
<th>C:N</th>
<th>A_2/A_1</th>
<th>I_{485}/I_{400}</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPI</td>
<td>3.2</td>
<td>0.86</td>
<td>673</td>
<td>445</td>
<td>7.42</td>
<td>4.2</td>
<td>5.75</td>
<td>12.2</td>
<td>3.067</td>
<td>2.109</td>
</tr>
<tr>
<td>Non-TPI</td>
<td>2.3</td>
<td>0.77</td>
<td>575</td>
<td>320</td>
<td>4.76</td>
<td>6.0</td>
<td>2.11</td>
<td>8.8</td>
<td>1.713</td>
<td>1.510</td>
</tr>
</tbody>
</table>

TPI: Terra Preta under natural forest and cultivated (N=18), Non-TPI: Non-anthropogenic soil, adjacent to TPI under forest (N=4). The numbers followed by different letters within a column are different at p<0.01 by Tukey’s test. TGI: Thermogravimetric index, IA: Index of aromaticity obtained by infrared spectroscopy (DRIFT), Total acidity: Concentration of all acidic functional groups on molecular surfaces, Carboxylic acidity: Concentration of carboxylic groups, O:H: Atomic ratio Oxygen: Hydrogen, E_4/E_6: Obtained by UV-Visible spectroscopy, indicate condensed aromatic rings, FOR: Obtained by electron paramagnetic resonance spectroscopy (EPR), used to describe humification degree, C:N: atomic ratio Carbon: Nitrogen, A_2/A_1 e I_{485}/I_{400}: Indices obtained by fluorescence spectroscopy, describe degree of humification of humic substances.
Table 4 Distribution of 13C among carbon containing chemical structures of the humic acids of Terra Preta and adjacent non-anthropogenic soils of the Amazon obtained by nuclear magnetic resonance spectroscopy (13C VACP/MAS NMR).

<table>
<thead>
<tr>
<th>Soils</th>
<th>Alkyl</th>
<th>Methoxyl</th>
<th>O-Alkyl</th>
<th>Aromatic Carboxyl</th>
<th>Carboxyl</th>
<th>Aliphatic</th>
<th>Aromatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPI</td>
<td>25 b</td>
<td>10 b</td>
<td>18 b</td>
<td>29 b</td>
<td>11 a</td>
<td>7 a</td>
<td>64 b</td>
</tr>
<tr>
<td>Non-TPI</td>
<td>29 a</td>
<td>12 a</td>
<td>26 a</td>
<td>22 a</td>
<td>11 a</td>
<td>2 b</td>
<td>75 a</td>
</tr>
</tbody>
</table>

TPI: Terra Preta under natural forest and cultivated (N=18); Non-TPI: Non-anthropogenic soil, adjacent to TPI under forest (N=4); The numbers followed by different letters within a column are different at P ≤ 0.05 by Tukey’s test. Source: Cunha (2005).

Table 5 List of techniques and methods used to obtain humification indices and reactivity, quantify and describing the properties of soil organic matter, of humic substances and, specifically, of the HAs (Cunha 2005), discussed in the text.

<table>
<thead>
<tr>
<th>Technique/Method</th>
<th>Purpose/Index/Property</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modified Walkley-Black method Embrapa</td>
<td>Quantification of organic C in soil</td>
<td>Oxidation of SOM by potassium dichromate</td>
</tr>
<tr>
<td>Benites et al. (2003) modified from Yeomans and Brenner (1988)</td>
<td>Quantification of humic substances</td>
<td>Oxidation of SOM by potassium dichromate</td>
</tr>
<tr>
<td>Method recommended by IHSS (International Humic Substances Society) (Swift 1996)</td>
<td>Extraction and separation of humic substances</td>
<td>Operational separation of humic substances based on solubility in aqueous solutions of acid and base</td>
</tr>
<tr>
<td>Thermogravimetry</td>
<td>Thermogravimetric index (TGI)</td>
<td>Ratio of the weight loss of HAs in the temperature ($^\circ$C) ranges (350–650) and (105–305)</td>
</tr>
<tr>
<td>Fourier Transform Infrared Spectroscopy with diffuse reflectance (DRIFT)</td>
<td>Index of aromaticity (IA)</td>
<td>Ratio of the absorbance of the bands (3057-3055 cm$^{-1}$) and (2934-2928 cm$^{-1}$)</td>
</tr>
<tr>
<td>Ba(OH)$_2$</td>
<td>Total acidity and carboxylic acidity (Schnitzer and Gupta 1965)</td>
<td>Total acidity = (titrated volume for blank – titrated volume for sample) × N of HCl × 1000/mass of the sample (mg)</td>
</tr>
<tr>
<td>Elemental analysis by high temperature combustion (Dumas method; Nelson and Sommer 1996)</td>
<td>O:H and C:N ratios</td>
<td>Carboxylic acidity = (titrated volume for blank – titrated volume for sample) × N of NaOH × 1000/mass of the sample (mg)</td>
</tr>
<tr>
<td>UV-Visible Spectroscopy</td>
<td>E$_2$/E$_6$ ratio (Kononova 1966)</td>
<td>Ratio of absorbance at 465 and 665 nm</td>
</tr>
<tr>
<td>Electron paramagnetic Resonance Spectroscopy (EPR)</td>
<td>Free Organic Radicals (FOR)</td>
<td>Obtained by the integration of the signal of the first derivative of the free radical, compared to a standard (KCl) of known concentration of spins (3 × 1015 spins g$^{-1}$), using synthetic rubi as secondary standard (Singer 1959; Martin-Neto et al. 1994)</td>
</tr>
<tr>
<td>Fluorescence spectroscopy</td>
<td>A${v}$:A${u}$ ratio (Schnitzer and Gupta 1965)</td>
<td>A${v}$:A${u}$ ratio of absorbance at (665-585 nm) and (425-345 nm) (Zsolnay et al. 1999)</td>
</tr>
<tr>
<td>Nuclear Magnetic Resonance Spectroscopy with Cross Polarization, Variable Amplitude Magic Angle Spinning (13C VACP/MAS NMR)</td>
<td>A${485}$:I${400}$ indices</td>
<td>I${485}$:I${400}$ ratio of absorbance at 480 nm and 400 nm (Kalbitz et al. 1999)</td>
</tr>
</tbody>
</table>

The organic matter of the Amazonian ADE has a key role in the formation of the chemical, physical and biological properties of these soils. Because of its high concentration, and principally due to its chemical-physical properties, TPIs feature unique fertility properties and so agricultural potential in humid tropical environments where soils are frequently obstacles of sustainable production. The ADE are rich in humified and stable organic matter that, at the same time gives higher fertility to the soil, making viable the existence of an environment that is favorable to cation exchange reactions, with organic and inorganic colloids, and the complexation of metallic ions.

FINAL CONSIDERATIONS
among others. For having stable organic matter, in the TPIs, these being national patrimony of Brazil (IPHAN 1988), is not desirable. However, using scientific investigation, important information can be obtained about the functioning of these soils that could be used, as model (Novotny et al. 2009; Renard et al. 2011), in the development of sustainable soil management systems for TPIs already under utilization and for the development of new soil management systems for tropical soils for the benefit of, principally, small producers, family farms and local communities of the Amazon and other tropical regions.

REFERENCES

