Evaluation of Cultivated Lime and Lemon Cultivars in Southern Iran for Some Biochemical Compounds

Hana Zandkarimi · Alireza Talaie · Reza Fatahi

Department of Horticultural Sciences, Faculty of Agriculture, University of Tehran, Karaj
31587- 77871, Iran

Corresponding author: * Zandkarimi@ut.ac.ir

ABSTRACT

There were no significant differences in the contents of total dietary fiber in the cultivars of lime (Citrus aurantifolia Swing cvs. ‘Persian’ and ‘Roodan’) and lemon (Citrus limon L. Burm cvs. ‘Lisbon’ and ‘Meyer’) tested but the contents of total dietary fiber in peel were significantly higher than pulp ($P < 0.05$). The content of total polyphenols showed significant differences in each part and in each cultivar. The highest total phenolic content was in leaves which ranged from 99.75 ± 0.68 to 129.42 ± 0.48 mg gallic acid/100 g DW than in green and yellow peels, petals, pulp and seed of all cultivars. Carotenoid and pectin contents were significantly different in the different parts of cultivars, significantly higher in fruit peel than in pulp. Lemon juice had higher antioxidant activity, TSS and pH than limes but lower ascorbic acid, EC and titratable acidity than lime juice. In conclusion, the peels of all cultivars were rich in dietary fiber, pectin and total carotenoid. All fruit parts of lemon cultivars had highest polyphenolic content. Peel and pulp of lime fruits showed highest pectin content.

Keywords: carotenoid, lemon, lime, pectin, polyphenol
Abbreviations: A, absorption; AoA, antioxidant activity; DPPH, 2,2-diphenyl-1-picrylhydrazyl; DW, dry weight; EC, electrical conductivity; FW, fresh weight; SW, sample weight; TA, titratable acidity; TSS, total soluble solid; TV, total volume

INTRODUCTION

Among various parts of plants, fruit is important as a natural antioxidant compound that has an important role in free radical-scavenging activities. These compounds include polyphenol, carotenoids, flavonoids and other compounds (Morel et al. 1994).

Citrus are among the most important fruits in tropical and subtropical regions (Hvarleva et al. 2008). Lime and lemon having differences in some characters, but because their most important similarity is their high level of titratable acidity, people often cannot recognize them and they are often both termed lemon. Lime (Citrus aurantifolia Swing) and lemon (Citrus limon L. Burm) are two species of the Citrus genus that, after oranges and mandarins, are ranked third in production and are cultivated in many countries. The value of citrus fruits in providing nutrients and medicinal components has been recognized since ancient times (Khan 2007). These fruits were mainly used in daily consumption and in juice production. Peripheral products of citrus fruit such as essential oil and pectin of fruit peel are used in the cosmetic and pharmaceutical industries (Khan 2007; Ladaniya 2008). By-products from citrus processing are used to produce other valuable compounds such as seed oil, pectin and other compounds which are used in the food, drug and cosmetics industries (Rouse and Crandall 1976; Bocco et al. 1998).

In Iran and some Middle East countries, whole lime fruit is dried and is used in some foods. The flowers are also used in tea.

Several studies about the evaluation of antioxidants in different parts of citrus plants have been realized, but this information is limited to some species of citrus and the differences between varieties in each species has not been investigated. Nowadays, the need for preservatives in the food industry is completely evident; one of these preservatives are antioxidant compounds, which are often used in synthetic form. On the other hand, synthetic antioxidants may be toxic and carcinogenic and their use in the food industry is prohibitive and the use of the natural antioxidant compounds is suggested (Loui et al. 2004; Rehman 2006; Garau et al. 2007). Citrus fruits possess high antioxidant capacity, possibly due to the amount of vitamin C, phenolic compounds, flavonoids and carotenoids. Most citrus juice has similar nutritional value but there are some differences, especially in the amount of vitamin C, antioxidant activity and citric acid (Rapisarda et al. 1999; Saidani and Marzouk 2003). Therefore, using citrus fruits is recommended from a health point of view.

MATERIALS AND METHODS

Plant material and sample preparation

This study was attempted to evaluate some biochemical compounds extracted from different parts of fruits in four cultivars of limes and lemons cultivated in southern parts of Iran. Two lime cultivars (cvs. ‘Persian’ and ‘Roodan’) and two lemon cultivars (cvs. ‘Lisbon’ and ‘Meyer’) were used for the experiment. ‘Roodan’ lime is a local cultivar in Southern Iran which has unique characteristics such as thornless stems and branches. These characteristics are important since the harvesting of fruits is made easier. Several fruits of each cultivar were harvested randomly from different parts of the trees at local farms. All parts of fruits were separated by hand into pulp, peel and seed. Some samples were used fresh but were dried and stored at -80°C for further use.

Total polyphenol content

The leaf, green peel, yellow peel, pulp, seed and petal samples were used to measure the phenolic compounds. Mature green fruits were collected to evaluate their phenolic compounds in peel. Phenolic compounds were extracted according to Vinson et al. (2001). All parts were dried in an oven at between 35 and 40°C for...
72 h. Dry samples were powdered by milling. Total phenolic compounds were extracted by percolation with methanol (50%) and were measured according to a procedure as suggested by Folin-Ciocalteu (Singleton and Rossi 1965).

Pectin content and total dietary fiber

For measuring the pectin content, 25 g of fresh sample (peel or pulp) was boiled with 400 ml distilled water for 1 h; evaporated water was replaced by distilled water. After cooling, the mixture was filtered through Whatman No. 4 filter paper following which 10 ml of NaOH (1 N) was added and kept overnight in room temperature (25°C). Then, 50 ml of acetic acid (1N) was added and left for 5 min, 25 ml CaCl₂ (1N) was added and the mixture was placed for 1 h at room temperature (25°C) then boiled for 1 min. Two sheets of Whatman filter paper No. 4 were washed with deionized water and dried in oven for 2 h. The filter paper sheets were weighted and then the solution was passed through them. To remove chloride ions, residues were washed with deionized water. A few drops of silver nitrate solution were added and then filter paper sheets were placed in an oven to be dried. After drying, they were weighed, and the difference between primary and secondary weight of paper equaled the dry weight of pectin (Rangana 1977). Total dietary fiber was measured according to AOAC (1984).

Total carotenoids

The carotenoid content in the pulp and peel of fruits was determined. The carotenoids were extracted by hexane: ethanol (9:1). 1 g of fresh sample (pulp or peel) was weighed then crushed using 5 ml of extraction solution on ice followed by centrifuging at 10,000 rpm at 4°C. The supernatant was removed and the remaining extraction solution was added to the previous extraction. This extraction was repeated until all carotenoid compounds were extracted and the sample became colorless. All supernatants were mixed and then the absorbance of the mixture was measured at 480 nm with a spectrophotometer (Perkin Elmer, Lambda-EZ201). AA was calculated using the following equation (Moon and Terao 1998):

\[
\text{AA (μg/g)} = \frac{(\text{TV} \times \times 10^3)}{(2500 \times 10^5 \times \text{SW})} \times \times 100
\]

Fruits juice characteristics

Fresh juice was extracted with a manual juicer. Ascorbic acid, titratable acidity, pH, total soluble solids (TSS), electrical conductivity (EC) and antioxidant activity were measured. Ascorbic acid was measured according to the protocol of Redox titration using iodine solution (www.outreach.canterbury.ac.nz). Titratable acidity (TA) was measured with 0.1 N NaOH to a final pH of 8.2 and calculated based on citric acid. pH and EC were determined with a pH meter and an EC meter, respectively. TSS was determined with a refractometer (Atago Co., Japan). Antioxidant activity (AA) of fruits juice was determined by the DPPH method according to Moon and Terao (1998). Fruit juice was mixed with 0.9 ml of 100 mM Tris-HCl buffer (pH = 7.4) then 1 ml of DPPH (300 μM in ethanol) was added. The mixture was shaken and left at room temperature in the dark for 30 min. The absorbance of the reaction mixture was measured at 517 nm with a spectrophotometer (Perkin Elmer, Lambda-EZ201). AA was calculated using the following equation (Moon and Terao 1998):

\[
\text{AA (μg/g)} = \frac{(\text{A sample (517 nm) - A control (517 nm)})}{(1 - A \text{ sample (517 nm) - A control (517 nm)})} \times \times 100
\]

Statistical analyses

The experiment was conducted in randomized complete block with three replications. Analysis of variance with general linear means model was done using SAS (v. 9.0, Cary, NC) and where interactions were not significant, main effects were separated by Duncan’s multiple range test at P ≤ 0.05. To verify the statistical significance of all parameters, the values of means ± SD were calculated. Bivariate simple correlation between characters was performed with SPSS software Ver. 10.

RESULTS

Total polyphenols

In all samples the total phenolic contents were higher in leaves, green peel, yellow peel, petals, pulps and seeds. The total polyphenol content in all lemons parts were higher than in limes. There were significant differences in total polyphenol content between all cultivars. In all cultivars green peels had higher polyphenol content than yellow peels. Total polyphenol content in all parts of lemons ranged between 8.23 ± 0.26 and 129.42 ± 0.48 mg/100 g DW and in limes between 4.22 ± 0.15 and 100.54 ± 0.50 mg/100 g DW (Fig. 1). There was no significant difference between total polyphenol content of leaves, pulp, petals and seed in the two lime cultivars, but total polyphenol content of green peels was significantly higher than that of yellow peels.

In all cultivars tested the highest amount of total polyphenol content in leaves was observed in cv. ‘Lisbon’ (129.42 ± 0.48 mg/100 g DW) followed by ‘Meyer’ lemon (122.04 ± 0.32 mg/100 g DW). Total polyphenol content in the leaves of ‘Persian’ lime (99.75 ± 0.68 mg/100 g DW) was not significantly different from that of ‘Roodan’ lime (100.54 ± 0.51 mg/100 g DW), but it was lower than lemon cultivars. There were no significant differences between polyphenol content in the pulp of ‘Persian’ lime (33.25 ± 0.68 mg/100 g DW) and ‘Roodan’ lime (31.66 ± 0.41 mg/100 g DW) was higher than that of ‘Lisbon’ (44.20 ± 0.31 mg/100 g DW). Also, all parts of each lemon cultivar had a higher amount of total polyphenol content than each lime cultivar. The amount of polyphenol content in the petals of ‘Persian’ lime (40.72 ± 0.54 mg/100 g DW) and ‘Roodan’ lime (38.23 ± 0.28 mg/100 g DW) was lower than in ‘Lisbon’ lemon (50.25 ± 0.82 mg/100 g DW) and ‘Meyer’ lemon (46.04 ± 0.52 mg/100 g DW). These amounts were close to the amount of total polyphenol content of pulp.

The total polyphenol content of the green peels of ‘Persian’ lime (60.49 ± 0.35 mg/100 g DW) was significantly higher than that of ‘Roodan’ lime (56.04 ± 0.41 mg/100 g DW), and also higher than total polyphenol content of yellow peels in these cultivars ‘Persian’ lime (54.74 ± 0.57 mg/100 g DW), ‘Roodan’ lime (48.84 ± 0.39 mg/100 g DW). The amount of total polyphenols in yellow peels of ‘Meyer’ lemon (64.72 ± 0.48 mg/100 g DW) was higher than that of ‘Lisbon’ lemon (60.15 ± 0.52 mg/100 g DW) while that of green peels of ‘Meyer’ lemon (73.17 ± 0.62 mg/100 g DW) was higher than that of ‘Lisbon’ lemon (67.51 ± 0.58 mg/100 g DW) (Fig. 1).

Dietary fiber and pectin contents

Comparative results of fiber contents in the pulp and peel of all of lime and lemon cultivars is presented in Fig. 2. In all cultivars total dietary fiber in peels was higher than in the pulp. There were significant differences in the peel between limes and lemons in terms of total dietary fiber content but not in the pulp of lime and lemon. The range of total dietary fiber content in peel and pulp of limes was 5.01 ± 1.14 and 9.02 ± 0.88 g/100 g DW, respectively, higher than lemons (4.86 ± 1.28 and 7.31 ± 1.07 g/100 g DW; Fig. 2). The dietary fiber content in the peels of ‘Persian’ lime (8.62 ± 1.19 g/100 g DW) was lower than that of ‘Roodan’ lime (9.02 ± 0.88 g/100 g DW) and this parameter in ‘Lisbon’ lime (7.21 ± 1.16 g/100 g DW) was not significant. The pectin content in the peel and pulp of both lime cultivars were higher than that of lemon cultivars. In all samples the pectin content in peel was higher than that of pulp (Fig. 3).

Total carotenoids

Total carotenoids in the fruit peels of all cultivars were
The amount of vitamin C in ‘Persian’ lime and ‘Roodan’ lime fruits was 56.71 ± 0.63 and 41.6 ± 0.41 mg/100 g FW, respectively and in ‘Lisbon’ lemon and ‘Meyer’ lemon, respectively. The amount of vitamin C between lime and lemon cultivars. The highest amount of carotenoids was in limes cultivars, especially in ‘Persian’ lime.

Fruit juice characteristics

The amount of vitamin C in ‘Persian’ lime and ‘Roodan’ lime fruits was 56.71 ± 0.63 and 41.6 ± 0.41 mg/100 g FW, respectively and in ‘Lisbon’ lemon and ‘Meyer’ lemon, respectively. There were significant differences in the amount of vitamin C between lime and lemon cultivars. The highest amount of vitamin C was in limes cultivars, especially in ‘Persian’ lime.

There were significant differences in pH, EC, TSS and TA between lime and lemon cultivars (Table 2). Lime fruit juice had higher EC and TA values but lower pH and TSS. The range of pH in lime fruit juice was 1.77 ± 0.03 and 1.67 ± 0.02 in ‘Persian’ and ‘Roodan’ lime, respectively and in lemon fruit juice, it was 2.61 ± 0.06 and 2.67 ± 0.03 in ‘Lisbon’ and ‘Meyer’ lemon, respectively.

The percentage antioxidant activity in lime and lemon cultivars ranged from 32.52 ± 0.67 to 65.87 ± 0.39%, that the antioxidant activity in lemon cultivars was significantly higher than in lime cultivars.

Bivariate simple correlation analysis

Bivariate correlation between two characters showed a relationship that is not considered as a kind of effect but makes it possible to indirectly measure another character (Jonson and Wichern 1988). The results of simple correlation analysis showed the existence of significant positive and negative correlations among some characters (Table 3).

Correlation coefficients among dependent variables indicated a relation between carotenoid contents in pulp and polyphenol contents in pulp and peel of fruits (Table 1). Antioxidant activity was positively correlated with polyphenol as well as carotenoid content in the peel and pulp. No significant correlation among pH, TA, EC and vitamin was noted; however, the only significant positive correlation between antioxidant activity and pH in fruit juice was measured.

Positive correlations were observed between antioxidant activity and polyphenol content in all parts of fruits such as green peel, yellow peel, pulp and seed, and also between antioxidant activity and carotenoid content in the peel and pulp of fruit. A positive correlation between fiber content in peel and pectin content in peel of fruits was found. There was a positive correlation between pectin content in peel and pulp (r = 0.96) and also between carotenoid content in peel and pulp (r = 0.99).

DISCUSSION

The compounds found in plants have a wide range of physiological effects on human beings and may protect against various diseases, including heart diseases and cancer. Seve-
lime was more sour than lemon; this is related with the convivity than lime juice. Lime fruit juice had higher EC, vitamin a higher carotenoid content than lime cultivars. 'Roodan' lime and 'Persian' lime peel and also in the pulp albedo, in lemon fruits, which is thicker than that of limes. may be associated with the peel thickness, especially theported that the dietary fiber content in lime and lemon peels against attack by phytopathogens (Im 2008). The reason for high levels of polyphenols in petals is
in citrus fruits (Gorinstein 1999). Further, the level of polyphenol content in green peel
in pulp. The phenolic content acts as powerful antioxidant
pounds in fruit peels. We found a significant positive cor-
Belitz and Grosch 1996; Rapisarda 1999). Compari-
tent of organic acid in fruit juice such as citric acid and ascorbic acid.
REFERENCES
AOAC (1984) Official Methods of Analysis (14th Edn), Association of Offi-
cial Analytical Chemist, Arlington
phenolic composition of citrus peel and seed extracts. Journal of Agricultural and Food Chemistry 46, 2123-2129
Curl I, Bailey GF (1956) Orange carotenoids. Part I. Comparison of carote-
enoids of Valencia orange peel and pulp. Journal of Agricultural and Food Chemistry 4, 156-162
ture on physico-chemical properties of dietary fibre and antioxidant
capacity of orange (Citrus aurantium v. Canarina) by-products. Food Chemistry 104, 1014-1024
Gorinstein S, Martin BO, Park YS, Haruenkit R, Lojek A (2001) Compari-
sion of some biochemical characteristics of different citrus fruits. Food Chemistry 74, 309-315
Im HW, Sue BS, Lee SU, Kozukue N, Kameyama MO, Levin CE, Fried-
Khan IA (2007) Citrus Genetics, Breeding and Biotechnology, CAB Internatio-
nal, 370 pp
Khandaker L, Ali MDB, Oba S (2008) Total polyphenol and antioxidant acti-
ty of red amaranth (Amaranthus tricolor L.) as affected by different sun light level. Journal of the Japanese Society for Horticultural Science 77, 395-401
Ladaniya M (2008) Citrus Fruit Biology, Technology, and Evaluation, Aca-
ademic Press, Goa, India, 593 pp

<table>
<thead>
<tr>
<th>Character</th>
<th>ph-p</th>
<th>ph-h</th>
<th>ph-h</th>
<th>ph-h</th>
<th>ph-h</th>
<th>ph-h</th>
<th>ph-h</th>
<th>ph-h</th>
<th>ph-h</th>
<th>ph-h</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>0.88</td>
<td>0.88</td>
<td>0.93</td>
<td>0.88</td>
<td>0.88</td>
<td>0.93</td>
<td>0.88</td>
<td>0.88</td>
<td>0.93</td>
<td>0.88</td>
</tr>
<tr>
<td>TSS</td>
<td>0.88</td>
<td>0.88</td>
<td>0.93</td>
<td>0.88</td>
<td>0.88</td>
<td>0.93</td>
<td>0.88</td>
<td>0.88</td>
<td>0.93</td>
<td>0.88</td>
</tr>
<tr>
<td>EC</td>
<td>0.88</td>
<td>0.88</td>
<td>0.93</td>
<td>0.88</td>
<td>0.88</td>
<td>0.93</td>
<td>0.88</td>
<td>0.88</td>
<td>0.93</td>
<td>0.88</td>
</tr>
</tbody>
</table>

Table 2 Fruit juice characters of four cultivars of lime and lemon.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>pH</th>
<th>TA</th>
<th>TSS</th>
<th>EC</th>
<th>Vit. C</th>
<th>Aoa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persian lime</td>
<td>1.77 ± 0.03 b</td>
<td>7.11 ± 0.05 a</td>
<td>7.87 ± 0.03 b</td>
<td>4933.33 ± 16.67 a</td>
<td>56.71 ± 0.63 a</td>
<td>36.7 ± 0.42 c</td>
</tr>
<tr>
<td>Roodan lemon</td>
<td>1.67 ± 0.02 b</td>
<td>6.58 ± 0.09 b</td>
<td>7.8 ± 0 b</td>
<td>4783.33 ± 16.67 b</td>
<td>41.6 ± 0.41 b</td>
<td>32.52 ± 0.67 d</td>
</tr>
<tr>
<td>Lisbon lemon</td>
<td>2.61 ± 0.06 a</td>
<td>5.46 ± 0.12 c</td>
<td>8.2 ± 0 a</td>
<td>3666.67 ± 16.67 c</td>
<td>38.03 ± 0.75 d</td>
<td>65.87 ± 0.39 b</td>
</tr>
<tr>
<td>Meyer lemon</td>
<td>2.67 ± 0.03 a</td>
<td>5.37 ± 0.15 c</td>
<td>8.2 ± 0 a</td>
<td>3833.33 ± 44.1 d</td>
<td>35.2 ± 0.63 c</td>
<td>56.3 ± 0.76 a</td>
</tr>
</tbody>
</table>

Table 3 Bivariate simple correlations between some characters measured in different parts of lime and lemon.

<table>
<thead>
<tr>
<th>Character</th>
<th>ph-p</th>
<th>ph-h</th>
<th>ph-h</th>
<th>ph-h</th>
<th>ph-h</th>
<th>ph-h</th>
<th>ph-h</th>
<th>ph-h</th>
<th>ph-h</th>
<th>ph-h</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>0.88</td>
<td>0.88</td>
<td>0.93</td>
<td>0.88</td>
<td>0.88</td>
<td>0.93</td>
<td>0.88</td>
<td>0.88</td>
<td>0.93</td>
<td>0.88</td>
</tr>
<tr>
<td>TSS</td>
<td>0.88</td>
<td>0.88</td>
<td>0.93</td>
<td>0.88</td>
<td>0.88</td>
<td>0.93</td>
<td>0.88</td>
<td>0.88</td>
<td>0.93</td>
<td>0.88</td>
</tr>
<tr>
<td>EC</td>
<td>0.88</td>
<td>0.88</td>
<td>0.93</td>
<td>0.88</td>
<td>0.88</td>
<td>0.93</td>
<td>0.88</td>
<td>0.88</td>
<td>0.93</td>
<td>0.88</td>
</tr>
</tbody>
</table>

*P < 0.05, **P < 0.01

Table 2 Fruit juice characters of four cultivars of lime and lemon.
Evaluation of cultivated lime and lemon cultivars in Southern Iran. Zandkarimi et al.

Rouse AH, Crandall PG (1976) Nitric acid extraction of pectin from citrus peel. Proceedings of the Florida State Horticultural Society 89, 166-168

Singleton VL, Rossi JAJ (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16, 144-155
