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ABSTRACT 
The free radical theory of aging hypothesizes that oxygen-derived free radicals are responsible for age-related damage at the cellular and 
tissue levels. In a normal situation, a balanced equilibrium exists among oxidants, antioxidants and biomolecules. Excess generation of 
free radicals may overwhelm natural cellular antioxidant defenses, leading to oxidation and further contributing to cellular functional 
impairment. The identification of free radical reactions as promoters of the neurodegenerative process implies that interventions aimed at 
limiting or inhibiting them should be able to reduce the rate of formation of degenerative changes with a consequent reduction in the 
aging rate and disease pathogenesis. Although the human diet is the main source of antioxidants, medicinal plants have received 
increasing attention in this context. Because antioxidant therapy is vital for the elimination of free radicals and ROS prevent the 
propagation of tissue damage and neuronal degeneration in the face of oxidative stress, diverse compounds and a broad variety of 
chemical structures have been investigated as therapeutic agents for acute central nervous system lesions. Indeed, there are currently many 
research groups working on this theme with the objective of discovering more potent and effective compounds. Here, we provide an 
overview of the current knowledge of the use of several medicinal plants as antioxidant agents to reduce the cellular damage produced by 
neurodegenerative diseases, focusing on basic and clinical evidence. 
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INTRODUCTION 
 
Neurodegenerative diseases are characterized by a slow and 
progressive loss of neurons and axons in the central nervous 
system, which is the primary pathological feature of acute 
and chronic neurodegenerative conditions such as Alzhei-
mer’s disease (AD; Capone et al. 2009), and Parkinson’s 
disease (PD), neurotropic viral infections, stroke, paraneo-
plasic disorders, traumatic brain injury, epilepsy, multiple 
sclerosis and Huntington’s disease. Although different cell 
groups are affected in each disease, they likely share com-
mon pathways involving complex molecular processes 
leading to degeneration (Borlogan et al. 1996; Navarro et al. 
2008). In mammalian brain the accumulation of dysfunc-
tional brain mitochondria with decreased rates of electron 
transfer in complexes I and IV and of ATP production is 

associated with the accumulation of oxidation products of 
phospholipids and proteins, and these characteristics appear 
as determining factors in brain degeneration (Halliwell 
2006; Boveris and Navarro 2008). Neurons are particularly 
at risk to oxidation products because many major antioxi-
dant defense mechanisms, such as GSH, Nrf-2, and metallo-
thienin, seem to be localized to astrocytes. On the other 
hand excessive ROS production is associated with activa-
tion of the Ca2+-dependent enzymes including proteases, 
phospholipases, and nucleases and alterations of signaling 
in addition to mitochondrial dysfunction producing neuro-
nal apoptosis (Mattson 2007). Increase in oxidative prod-
ucts, such as HNE for lipid peroxidation, 3-NT for protein 
carbonyl and protein nitrotyrosine adducts, and 8-OHdG for 
DNA damage, associated with neurodegenerative diseases 
support the notion that oxidative stress is a common ele-
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ment in the progression of these diseases (Simonian and 
Coyle 1996; Halliwell 2006). 

Oxidative stress is also a significant factor associated 
with the decline of function in the aging brain. With the 
disproportional increase in aging population in the next 
decade, there has been a considerable increase in neuro-
degenerative diseases which has increased attention to 
develop nutritional therapies to combat these age-related 
oxidative processes. Considerable attention is focused on 
botanicals in vegetables, fruits, grains, roots, flowers, seeds, 
tea and red wine. Other nutritional interventions, such as 
dietary restriction and a Mediterranean diet, have also cap-
tured considerable attention, in particular among older 
population and subjects with mild cognitive impairments 
(Trushina and McMurray 2007; Burgener et al. 2008). 

Compounds such as poliphenols are becoming recog-
nized for their protective effects against inflammatory dis-
eases, cancers, cardiovascular and neurodegenerative dis-
eases. Although the mechanisms whereby these compounds 
display beneficial effects remain elusive, there is increasing 
evidence to support their anti-oxidative, anti-inflammatory, 
anti-apoptotic and metal-chelating properties (Ndiaye et al. 
2005). Besides these polyphenolic compounds, there is 
increasing evidence for NADPH oxidase as an important 
source of ROS in the central nervous system. 

 
Oxidative stress and mitochondrial dysfunction 
 
The free radical theory of aging and degeneration is based 
on the works of Gerschaman (Gerschaman et al. 1954; Har-
man 1972), which considered that degeneration is caused by 
the continuous inactivation of biologically essential macro-
molecules due to chemical modifications produced in reac-
tions mediated by oxygen free radicals. When the free radi-
cal theory of aging and degeneration, lacked the precision 
of the subcellular location of the oxidative reactions medi-
ated by free radicals, focused on mitochondria, and as the 
mitochondrial theory of degeneration emerges (Vina et al. 
2003; Harman 2006). Mitochondria were brought to atten-
tion in aging biology due to the central role of mitochondria 
in producing biochemical energy (ATP) to meet cellular re-
quirements in aerobic cells and to the decline of basal meta-
bolic rate and of physical performance that are characteris-
tic of aging. Moreover, mitochondria are considered likely 
pacemakers of tissue aging due to their continuous produc-
tion of the free radicals superoxide (O2

·) and nitric oxide 
(NO), to the mitochondrial sensitivity to free radical medi-
ated oxidative damage and to the accumulation of phospho-
lipid, protein, and DNA oxidation products in aged animals 
(Vina et al. 2003; Harman 2006). 

Cells which use oxygen, to obtain of metabolic energy 
in ATP form produce, in addition to oxidation, molecular 
species whose cytotoxic potential must strictly be controlled. 
This control is performed by molecules such as antioxidants. 
A portion of the oxygen that we breathe is reduced by an 
alternative cytochrome oxidase pathway and gives rise to 
partially reduced forms of molecular oxygen (i.e., reactive 
oxygen species or ROS) that are responsible for the pheno-
menon of oxidative stress (Fig. 1; Halliwell and Gutteridge 
2007). 

The reactivity of the ROS allows them to interact with a 
diverse array of macromolecules, such as lipids, proteins 
and nucleic acids, to modify their structure and function 
(Fig. 2). This oxidative stress is a major risk factor for the 
initiation and progression of many neurological disorders 
(Gilgun et al. 2001; Barja 2002) via the high production of 
reactive free radicals secondary to either an overproduction 
of reactive species or a failure of cell buffering mechanisms 
that normally limit their accumulation. Oxidative damage to 
proteins, lipids, and nucleic acids has been found in the 
CNS of patients with degenerative diseases. Although mito-
chondria are capable of generating ROS, the rate of ROS 
production under physiological conditions is very low and 
proportional to the rate of mitochondrial oxygen utilization. 
However, this equilibrium can be altered in response to 

various pathological insults, such as hypoxia, reperfusion, 
changes in pH and ionic strength, and toxic compounds 
(Chaudiére 1994). Excessive ROS production is associated 
with the activation of Ca2+-dependent enzymes, including 
proteases, phospholipases, and nucleases and alterations of 
signaling pathways that lead to mitochondrial dysfunction 
and neuronal apoptosis (Mattson 2007; Bredesen 2008). An 
increase in oxidative products, such as 4-HNE (causes lipid 
peroxidation), 3-NT (causes protein carbonyl and nitrotyro-
sine adducts), and 8-OHdG (causes DNA damage), associ-
ated with neurodegenerative diseases supports the notion 
that oxidative stress is a common element in the progression 
of these diseases (Fig. 3) (Simonian and Coyle 1996; Halli-
well 1997). 

Cells have evolved effective molecular mechanisms to 
resist the adverse effects of oxidative stress, including a 
range of antioxidants. An antioxidant is a molecule able to 
prevent and/or avoid the oxidation of another molecule, 
either by interacting with and stabilizing the reactive spe-
cies or by transforming these reactive species into a more 
stable configuration/reducing their reactivity (Fig. 3) (Halli-
well and Gutteridge 2007). 

The homeostatic function between free radical produc-
tion and antioxidant defenses is of great importance, as it 
maintains the reactive species below their cytotoxic thres-
holds. Because the formation of ROS is the result of oxygen 
consumption, ROS can exert important regulatory physiolo-
gical effects under physiological or controlled conditions 
ROS are mainly produced in mitochondria, which utilize 
most of the O2 consumed for substrate metabolism and ATP 
production, reducing O2 to water. ROS, produced under 
normal aerobic metabolism, are essential for cell signaling 
and for bacterial defense (Halliwell and Gutteridge 2007; 
Cerda et al. 2010). 

O2� e� O2
.� e� +�2H+����H2O2 e� +�H+�������.OH������e� +��H+�������H2O

Superoxide������������������������������������ Hydroxyl
radical������������������������������������� radical

H�2O����������

Hydrogen��peroxide

Fig. 1 Monovalent reduction of molecular oxygen. Oxygen is reduced 
by an alternative cytochrome oxidase pathway by a sequential monovalent 
mechanism. This mechanism captures electrons of progressive forms and 
gives rise to reactive species, such as superoxide, hydrogen peroxide, and 
hydroxyl radicals. Based on Cerda et al. (2010). 
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Fig. 2 Synchronous activity of antioxidant enzymes in the metabolism 
of the radicals hydrogen superoxide and peroxide and the inhibition 
of the formation of hydroxyl radicals. The performance of SOD, in 
addition to the activities of CAT and GSH-px, in a synchronous form 
(continuous lines of trenches) the most effective of the three enzymes 
listed for the reduction of the concentrations of superoxide and hydrogen 
peroxide. The main objective of this defensive mechanism is to avoid the 
interaction between both peroxides and hydrogen with transition metals 
(dashed lines), thereby preventing the formation of hydroxyl radicals 
through Haber-Weiss and Fenton reactions. Based on Cerda et al. (2010).
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Overall, biological antioxidants can be divided into two 
groups of molecules: those with complex structures and 
high molecular weight (i.e., antioxidant enzymes) and those 
of smaller size and molecular weight, which includes vita-
mins (e.g., E and C), glutathione (GSH), uric acid, carote-
noids, phenolic compounds, creatine and lipoic acid (Sies 
1986; Bors and Michel 1999). Antioxidant protection re-
quires the synchronized action of three enzymes, super-
oxide dismutase (SOD), catalase (CAT), and glutathione 
peroxidase (GSH-px), to be effective. These enzymes 
reduce the reactive species superoxide and hydrogen per-
oxide molecules by transforming them into more stable 
molecules and preventing the formation of additional ROS 
(e.g., the hydroxyl radical (OH); (Fig. 2; Blankberg 2003). 
Therefore, reducing oxidative stress appears to be a rational 
choice for the prevention and reduction of the rate of prog-
ression of many neurological disorders. Moreover, the CNS 
contains excitatory amino acids and dopamine that generate 
ROS during their metabolism. The impairment of mito-
chondrial function contributes to the generation of free radi-
cals and oxidative stress, which can lead to mitochondrial 
DNA mutations. These related processes converge into a 
common pathway leading to apoptosis. Therefore, ongoing 
efforts are focused on the development of potent antioxi-
dants and energy-yielding compounds. The crucial proper-
ties of an antioxidant include the ability to cross the blood-
brain barrier following systemic administration, the removal 
of O2, the scavenging to prevent ROS formation or their 
precursors, and the up-regulation of endogenous antioxidant 
defenses. 

Another mechanism involved in chronic, neurodegene-

rative, and acute CNS conditions (such as stroke and trau-
matic injury) is inflammation. Levels of pro-inflammatory 
cytokines including tumor necrosis factor-alpha, interleu-
kin-1 beta, IL-2 and IL-6 were found to be increased in 
postmortem brains of patients with PD and AD and in spi-
nal cords of amyotrophic lateral sclerosis patients (Szelenyi 
2001). This observation, together with the presence of reac-
tive inflammatory cells, especially microglia and other im-
mune-associated proteins, in affected CNS areas, provided 
the basis of association of inflammation in the pathogenesis 
of neurodegenerative diseases (Fig. 3). Yet, it is still unclear 
whether the inflammatory reaction represents an attempt to 
repair neurons or further contributes to their injury. It is also 
possible that the increased immune reactivity causes in-
creased vulnerability of neuronal cells to potential neuro-
toxic factor. 

In this context, is important to note that key differences 
between inflammatory processes within the CNS (neuro-
inflammation) and the periphery exist, partially due to the 
natural compartmentalization of the brain by the blood-
brain barrier. As a result of these differences, classical anti-
inflammatory agents have not played a major role in the 
management of CNS inflammatory conditions. However, 
some compounds derived from plants may have a potential 
effect on inflammation in the CNS by operating via dif-
ferent mechanisms of action. 
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Fig. 3 Signaling pathways associated with oxidative stress. The initial mitochondrial metabolic failure (ATP) leads to disruption of ionic pump 
functioning at the membrane level and massive neurotransmitter and glutamate release which in turn increase the Ca2+ entry. There is an activation of 
enzymes (XO, NOS, COX, LOX kinases). Reactive oxygen and nitrogen species production (such as O2-, NO and H2O2) is part of this process, 
generating lipid peroxidation and nuclear DNA damage. AA = arachidonic acid; COX = cyclooxygenase; DAG = diacylglycerol; ER = endoplasmic 
reticulum; G = G protein; LOX = lipoxygenase; mglu = metabotropic glutamate receptors. NO = nitric oxide; NOS = nitric oxide synthase; PKC = protein 
kinase C; PL = phospholipids; PLA2 = phospholipase A2; XO = xanthine oxidase. Modified from Sun et al. (2008), Dajas et al. (2003) and Lorigados et 
al. (2010). 
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Oxidative stress and neurodegenerative disorders 
 
1. Alzheimer's disease (AD) 
 
AD is the most common form of dementia, affecting more 
than 4 million people in the U.S. and 15 to 20 million others 
worldwide. Neuropathologically, AD is characterized by the 
accumulation of beta-amyloid (�A) protein to form plaques 
and tau phosphorylation resulting in tangle formation. AD is 
primarily an idiopathic disease with the exception of some 
rare (5%) early onset autosomal-dominant familial cases 
(Rocchi et al. 2003). Aside from genetic factors, epigenetic 
and environmental factors play an important role in the 
onset of sporadic AD. Cardiovascular abnormalities, such as 
hypertension, diabetes, mini-strokes, and atherosclerosis, 
are also factors precipitating an increased risk for AD. 
Dementia is best correlated to synaptic and neuronal loss, 
rather than directly to pathological burden, and so much 
interest has been focused on understanding the pathways 
that lead firstly to the formation of pathology, and then from 
pathology to synaptic damage, loss and then neuronal death. 

Alzheimer brains have low levels of acetylcholine 
(Ach), which can arise from the accumulation of �A protein 
fragments that form hard plaques that can in turn interfere 
with the ability of Ach to effect synaptic transmission and 
initiate inflammatory processes that produce ROS. There is 
evidence that �A peptides contribute (at least partially) to 
the oxidative mechanism. These peptides (39-43 amino 
acids) are released from the amyloid precursor protein 
through �A and �-secretases and, upon release, can ag-
gregate into an oligomeric form. Oligomeric �A causes oxi-
dative damage to neurons and glial cells and initiates chan-
ges in synaptic plasticity, events occurring long before their 
deposition and formation of the amyloid plaques (Selkoe 
2003). Studies suggests that �A open channels in cell mem-
branes, permitting calcium ions (Ca2+) to enter the cell and 
triggering several processes leading to mitochondrial dys-
function, inflammation, and cell death (Butterfieldt et al. 
2002; McKeel et al. 2004; Lipton 2007; Caponne et al. 
2009). Inflammation often results from persistent oxidative 
stress, but other determinants include �A, protease inhib-
itors, pentraxins, inflammatory cytokines, and prostanglan-
din-generating cyclooxygenases. Unhealthy neurons contain 
low levels of N-acetyl-aspartate (NAA), which may also be 
an issue. Exposure to pollutants can make the BBB perme-
able to toxins, thus causing oxidative stress, inflammation, 
and �A accumulation (Calderon-Garcidueñas et al. 2003, 
2008). Another possible cause of cell death in AD is a che-
mical change in a protein tau that keeps microtubules stable. 
This causes a neuron’s microtubules to pair with other 
tubules producing tau (neurofibrillary) tangles that result in 
tubule disintegration and block neurotransmitters, leading to 
cell death. Indeed, there is great interest in the search for an 
effective therapy to combat oxidative damage in AD. 

 
2. Parkinson’s disease (PD) 
 
PD affects approximately 1% of the population over the age 
of 50. The clinical manifestations of PD include tremors, 
bradykinesia, muscle rigidity, and akinesia, and patholo-
gical landmarks include a progressive loss of dopaminergic 
neurons in the substantia nigra (Cardoso et al. 2005). Des-
pite numerous hypotheses and speculations of the etiology 
of PD, oxidative stress remains the leading theory (Miller et 
al. 2008). The familial and sporadic forms of PD are indis-
tinguishable and share the common biochemical features of 
a deficit of brain dopamine and a reduction in dopamine 
transmission within the basal ganglia. Microscopically, 
there is a degeneration of dopaminergic cells and the pre-
sence of Lewy bodies in mesencephalic neurons of the sub-
stantia nigra, which project to the body striatum (nigrostri-
atal pathway). The extent of neuronal loss not only focuses 
on the dopaminergic system but also affects other classical 
neurotransmitter systems, such as the cholinergic (acetyl-
choline) and catecholaminergic nuclei. Therefore, the motor 

symptoms of PD are related to the dopaminergic systems, 
and the non-motor manifestations are not related to dopa-
minergic systems. 

In physiological situations, the mitochondria account 
for the highest consumption of oxygen, which results in the 
increased production of superoxide radicals that are reduced 
to ROS. Antioxidant enzymes such as SOD2 decrease ROS 
levels to a minimum, but when there are defects in the mito-
chondria (as is assumed in PD), this balance is disrupted. 
(Zhou 2008). Experimental data indicate that PD is associ-
ated to two interdependent conditions of brain mitochon-
dria: mitochondrial dysfunction and mitochondrial oxida-
tive damage. Several studies have shown mitochondrial 
dysfunction and reduced activity of mitochondrial complex 
I in substantia nigra (Dexter et al. 1994; Schapira 2008) and 
in frontal cortex (Navarro et al. 2009) in PD patients. More-
over, similar mitochondrial complex I dysfunctions were re-
ported in skeletal muscle and platelets of PD patients (Mann 
et al. 1992). This has been supported from studies in which 
genes of the mitochondrial respiratory pathway were selec-
tively manipulated. As a result of oxidative damage to phos-
pholipids and polyunsaturated free fatty acids (PUFAs), the 
double lipid membranes in cells may be affected in PD by a 
decreased concentration of substantia nigra and an increased 
concentration of malondialdehyde, a product of lipid oxida-
tion. Other evidence of the oxidation of lipids in this disease 
is an increase in 4-HNE, a product of the lipophilic per-
oxidation of membrane-bound arachidonic acid. Similarly, 
variants of synuclein (the mutant and the natural form of 
amyloid fibrils similar to those seen in Lewy bodies) and 
oligomers that are not fibrillar (called protofibrils), have 
been proposed to be toxic forms of synuclein. Additionally, 
products such as 8-oxo-dG are increased in postmortem 
samples of the substantia nigra from PD brains. 

As neuroinflammation is also seen in PD, inflam-
mation-based experimental models have been developed, 
using, for example, lipopolysaccharide as a stimulus to acti-
vate TLR-mediated innate responses. Progressive features 
have been demonstrated in these models, particularly in the 
MPTP model, which leads to microglial activation as a pro-
minent and persistent feature. That the substantia nigra is 
most often affected possibly correlates with the high num-
ber of microglia in this area. One factor that could contri-
bute to microglial activation is overexpression of human �-
synuclein in a transgenic model. In addition, while effector 
CD4+ T cells can be neurodestructive in the MPTP model, 
infiltration of CD4+ T-regulatory cells appears to be neuro-
protective in this context (Harvey et al. 2008; Brochard et 
al. 2009; Reynolds et al. 2009). 

 
Stroke 
 
Stroke is the third leading cause of death and the foremost 
cause of disability in aging adults. Two types of stroke can 
occur, hemorrhagic stroke, and the more common, ischemic 
stroke. In hemorrhagic stroke, rupture of an artery results in 
uncontrolled bleeding to the affected area of the brain. In 
ischemic stroke, there is a blockage of blood flow to the 
brain due to the formation of a blood clot. This deprivation 
of oxygenated blood results in the formation of the ischemic 
core where cells die rather quickly and irreversibly due to 
necrosis. The onset of lipolysis, protein degradation, and the 
breakdown of ion homeostasis are some of the events 
responsible for the rapid death of these cells (Brouns and 
De Deyn 2009). 

The pathological manifestations in stroke are diverse 
and depend on the severity, duration, and localization of the 
ischemic damage. Many animal models have been deve-
loped in which blood flow is focally ischemic followed by 
reperfusion either globally, permanently or transiently, and 
completely or incompletely interrupted. 

Many studies have indicated that the increase in oxi-
dative stress contributes to lipid damage, protein alterations, 
and DNA damage. Ironically, the return of blood flow to the 
infarcted area of the brain causes harm along with its bene-
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fits due to the increase in oxygen availability and the in-
crease in oxidative stress that reperfusion causes. In these 
situations, lactic acid accumulates in the affected neurons 
promoting prooxidant effects by increasing the H+ concen-
tration within the cells and generating more ROS (Allen 
2009). The primary source of ROS is O2, which is generated 
by leakage from complex III of the electron transport chain 
of mal functioning mitochondria. 

In the area between the unaffected brain and the ische-
mic core lies a region where the struggle between the life 
and death of neurons ensues. This region of the brain is 
known as the penumbra. It is here that the brain is com-
posed of damaged and malfunctioning, yet salvageable, 
tissue. Cells in this region are susceptible to a programmed 
form of cell death known as apoptosis. These cells can 
remain viable for several days following the onset of stroke 
(Schaller and Graf 2004). Here in the penumbra region is 
where a host of events related to oxidative stress take place. 
Ironically enough, reperfusion acts as a double-edged sword. 
While reperfusion is essential to save the cells affected by 
ischemia, it also brings along with it its own threat. When 
reperfusion occurs, there is a large and rapid influx of oxy-
genated blood to the infarct region. While this delivers the 
necessary blood, it also brings with it the elements neces-
sary for producing ROS that contribute to the oxidative 
stress placed upon the already damaged brain tissue. 

Previous studies with neurons in culture have demons-
trated a role for ionotropic glutamate receptors, particularly 
the NMDA subtype, in triggering massive Ca2+ influx and, 
in turn, the activation of Ca2+-dependent enzymes that trig-
ger mitochondrial dysfunction and apoptotic cell death. Al-
though mitochondrial dysfunction produces ROS that cause 
neuronal apoptosis in cerebral ischemia (Chan 2001, 2004), 
recent studies also provide evidence for the involvement of 
ROS from NADPH oxidase (Wang et al. 2006, 2009). To 
combat the deleterious effects of oxidative stress associated 
with ischemic /reperfusion, a number of studies have 
attempted to upregulate antioxidant enzymes (e.g., SODs, 
CAT and GSH-pX) (Saito et al. 2005). 

While the extent of damage and repair mechanisms 
varies, the immune response provoked plays a crucial role 
in mediating neuronal damage. Experimental stroke is bi-
phasic, generally involving the activation of leucocytes and 
the development of neurodegeneration. Recent studies have 
suggested that, in particular, the production of IL-23 and IL-
17 by T cells entering the brain contributes to the neurolo-
gical deficits that arise (Shichita et al. 2009). 

 
Epilepsy 
 
While defining epilepsy as a neurodegenerative disease 
remains controversial, there is sufficient evidence indicating 
that seizures and status epilepticus (SE) mainly produce ir-
reversible neuronal damage. Epilepsy affects approximately 
0.8% of the population. In the majority of patients, the sei-
zures have a focal onset. In newly diagnosed patients with a 
clinically localizable seizure onset, approximately 30% of 
the seizures begin in the temporal lobe (Manford et al. 
1992). In most of these patients, the development of the 
disorder is an ongoing process: 1) an initial brain-damaging 
insult (e.g., genetic malformation, head trauma, stroke, 
infection, or SE), a latency period (epileptogenesis), and 3) 
the recurrence of spontaneous seizures (epilepsy). In a sub-
population of patients, epilepsy and the associated cognitive 
impairment worsen over time (Pitaknen and Sutula 2002). 
Neurobiological changes triggered by an epileptogenic 
insult in the adult brain include acute and delayed neuronal 
death, gliosis, axon and dendritic plasticity, neurogenesis, 
angiogenesis, a reorganization of the extracellular matrix, 
and a molecular reorganization of receptors and channels. 
These alterations continue in parallel or sequentially during 
epileptogenesis, which is a major challenge for the design 
of antiepileptogenic treatments. More recently, evidence for 
a more general involvement of mitochondria also in spo-
radic forms of epilepsy has been accumulated (Kunz et al. 

2004; Kann and Kovács 2007). This might be related to the 
fact that mitochondria are intimately involved in pathways 
leading to neuronal cell death seen in experimental and 
human epilepsy. Accumulating evidence indicates that free 
radicals, oxidative stress and mitochondrial dysfunction are 
important factors in the general pathogenesis of epilepsy 
(Kann and Kovács 2007; Jarrett et al. 2008; Kudin et al 
2009; Waldbaum and Patel 2010). Therefore, it is reasona-
ble to assume a considerable pathogenic role of mitochon-
drial dysfunction in the process of epileptogenesis and sei-
zure generation. 

Therefore, one rational component of an anti-epilepto-
genic treatment regimen is neuro-protection, which is 
already one of the most attractive targets in CNS drug deve-
lopment. However, the question remains: does preventing 
neuronal death prevent other consequences? There is a clear 
distinction between preventing neuronal death and preven-
ting the later development of epilepsy. Indeed, some endo-
genous neuro-protective pathways may be pro-epileptoge-
nic by encouraging axonal reorganization and potentiating 
synaptic transmission (Sweatt 2004). Preventing calcium 
accumulation by inhibiting N methyl aspartate receptor 
(NMDA) should prevent downstream consequences. Indeed, 
NMDA receptor antagonists appear to prevent not only neu-
ronal death but also the subsequent cognitive effects and 
epileptogenesis (Rice et al. 1998). However, NMDA recep-
tor antagonism is not always sufficient to prevent the deve-
lopment of epilepsy, even when it has prevented neuronal 
damage (Brandt et al. 2003). 

These examples show that oxidative stress and inflam-
mation play a pivotal role in neurodegenerative diseases 
(Halliwell 2006). Thus, the implementation of radical sca-
vengers, transition metal (e.g., iron and copper) chelators, 
quenchers of singlet and triplet oxygen, inhibitors of 
peroxidation and inflammation, and the non-vitamin natural 
antioxidant polyphenols may be appropriate therapeutic 
options. Because synthetic antioxidants could be potentially 
toxic and anti-inflammatory drugs have severe side effects, 
research has instead focused on natural antioxidants and 
anti-inflammatory products obtained from plants (Wang et 
al. 2009), which may offer new alternatives to the limited 
therapeutic options that currently exist for the treatment of 
neurological diseases and/or their symptoms. 

 
Natural compounds with antioxidant effects 
 
The use of plant-derived supplements for improving health 
is gaining popularity because most people consider these 
natural products to be safer and to produce less side effects 
than synthetic drugs (Raskin et al. 2002). Today, one in 
three Americans use herbal supplements. 

 
1. Medicinal plants 
 
Medicinal plants contain different biologically active sub-
stances, such as polyphenols, tocopherols, alkaloids, tannins, 
carotenoids, and terpenoids these compounds have potent 
antioxidant which can be useful. Flavonoids and phenolic 
acids exhibit various beneficial pharmacological properties, 
such as antioxidant, vasoprotective, anti-carcinogenic, anti-
neoplasic, anti-viral, anti-inflammatory, and anti-allergic 
effects, and anti-proliferative activity on tumor cells (Cai et 
al. 2004; Bhatnagar et al. 2005; Beevi 2010). 

The scavenging properties of antioxidant compounds 
(e.g., phenolic acids and flavonoid) are often associated 
with their ability to form stable radicals, which are reactive 
and can be removed by several mechanisms (Bors and 
Michel 1999; Wolfe et al. 2008). 

 
Polyphenols are natural substances that are present in 

some liquid (e.g., olive oil, red wine, and tea) obtained from 
plants, fruits, and vegetables (Butterfield et al. 2002; Sun et 
al. 2008). Phenolic compounds may exist in free, esterified 
and glycosidic forms and are powerful chain-breaking anti-
oxidants (Choi et al. 2002). Numerous studies in the past 10 
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years have shown that polyphenols have in vitro and in vivo 
activity in the prevention or reduction of the deleterious 
effects of oxygen-derived free radicals associated with 
several chronic and stress-related human and animal dis-
eases. Polyphenols scavenge lipid peroxyl radicals and 
thereby break the radical chain sequence via the same me-
chanism as their scavenging activity on hydroxyl radicals 
(which are the major active oxygen species that cause lipid 
oxidation and enormous biological damage): 
a) Hydrogen atom transfer from the antioxidant to the lipid 

peroxyl radical results in the formation of a stable anti-
oxidant radical and relatively stable cis- and trans-lipid 
hydroperoxide; 

b) Deactivation of the lipid peroxyl radicals by single elec-
tron transfer; and 

c) Chelation of transition metals to suppress the initiation 
of radical formation during the catalytic oxidation of 
lipids. The formed phenoxyl radical is relatively stable, 
and it reacts slowly with the substrate but rapidly with 
another lipid peroxyl radical (Choi et al. 2002; Owuor 
and Kong 2002). 
 
Flavonoids are the largest group of polyphenols, a 

group that is mainly divided into anthocyanins (which are 
glycosylated derivatives of anthocyanidin present in color-
ful flowers and fruits) and anthoxantins, colorless com-
pounds further divided into several categories (including 
flavones, isoflavones, falvanols flavans, and flavonols) (Fig. 
3) (Martínez et al. 2002). 

Flavonoids consist of an aromatic ring that is condensed 
to a heterocyclic ring and attached to a second aromatic ring. 
The abundant phenolic hydroxyl groups on the aromatic 
ring confer the antioxidant activity, and the 3-OH is essen-
tial for the iron chelating activity of these compounds (Fig. 
4) (Salazar-Aranda et al. 2008; Galleano et al. 2010). 

Special interest has been assigned to the therapeutic role 
of antioxidants in neurodegenerative diseases, such as PD 
and AD (Halliwell 2006), where oxidative damage to neuro-
nal biomolecules and an increased accumulation of iron in 
specific brain areas are major pathological aspects (Cardoso 
et al. 2005). Although the etiology of both disorders and 
their respective dopaminergic and cholinergic neuronal de-
generation remain elusive, the chemical pathology of PD 
shows many similarities to AD, including an increase in 
iron concentration, the release of cytochrome c, alpha-
synuclein aggregation, oxidative stress, a loss of tissue GSH, 
a reduction in mitochondrial complex I activity, and an 
increase in lipid peroxidation (Coyle and Puttfarcken 1993; 
Dauer and Przedborski 2003). 

Although the specific mechanisms by which green tea 

polyphenols exert their neuro-protective action are not 
clearly defined, recent evidence indicates that aside from 
their antioxidant and iron chelating properties, polyphenols 
have a profound effect on cell survival/death genes and sig-
nal transduction (Aruoma 2003). The revelation of novel 
molecular targets possibly implicated in their neuro-protec-
tive action include calcium homeostasis (Dajas et al. 2003), 
the extracellular mitogen-activated protein kinases (Scho-
roeter et al. 2002), protein kinase C, antioxidant enzymes, 
antioxidant regulatory element survival genes, and the amy-
loid precursor protein processing pathway (Samoylenko et 
al. 2010). Therefore, green tea polyphenols are now being 
considered as therapeutic agents in well-controlled epide-
miological studies aimed at altering brain aging processes 
to serve as possible neuro-protective agents in progressive 
neurodegenerative disorders (Weinreb et al. 2004). 

Because PD is caused by a loss of neurons from the 
substantia nigra of the brain and (once damaged) these neu-
rons stop producing dopamine and compromise the brain’s 
ability to control movement, this pathology can be con-
trolled by antioxidants as adjuvants with dopamine agonists 
or monoamine oxidase (MAO) inhibitors. Banisteriopsis 
caapi, which contains the MAO inhibitors �-carbolines, 
harmine, and harmaline as active constituents responsible 
for anti-depressant activity, provides protection against 
neuro-degeneration and has potential therapeutic value for 
the treatment of PD (Sánchez 1991). 

Although the use of Hypericum perforatum (St. John's 
wort) has been recognized in the treatment of mild to mode-
rate depression and has been better tolerated than conven-
tional antidepressants, recent studies have shown that its use 
has a neuro-protective effect and an increased capacity for 
learning and memory (Kumar 2006). Moreover, H. perfo-
ratum has demonstrated a clear inhibitory effect on the neu-
ronal uptake of several neurotransmitters, such as serotonin, 
noradrenaline, dopamine, gamma-aminobutyric acid 
(GABA), and L-glutamate (Müller 2003). In contrast, all 
other antidepressants are either specific to one system or 
show overlapping inhibitory effects on a maximum of two 
systems. These results and similar data from other studies 
investigating the effects of plant extracts may be explained 
by the fact that the effects in the CNS are not only due to a 
single active constituent or group of constituents but by 
many constituents/ molecular groups of the constituents, 
reflecting possible synergistic actions on neurological acti-
vity. 

In traditional Chinese medicine, Huperzia serrata is 
mainly used as an anti-inflammatory and analgesic, but it 
has also been used to correct memory loss. Huperzine A, a 
lycopodium alkaloid isolated from the moss H. serrata, 
shows an ability to inhibit acetylcholinesterase (AChE) in 
vitro and in vivo. In a clinical trial, huperzine A significantly 
improved memory and behavior in AD patients. Moreover, 
it was less toxic than the synthetic AChE inhibitors done-
pezil and tacrine. Additionally, huperzine A may have 
potential in the attenuation of memory deficits and neuronal 
damage that occur after ischemia, therefore providing a 
benefit in the treatment of cerebrovascular types of demen-
tia (Howes et al. 2003). 

The dried root of Scutellaria baicalensis has also been 
widely used in China to treat depression. Its antidepressant 
action appears to result from the inhibition of MAO-A and 
MAO-B. In this context, MAO-A is more important to the 
metabolism of the major neurotransmitter monoamines, 
such as noradrenaline, dopamine, and 5-hydroxytryptamine 
(Zhu et al. 2006). 

The neuropharmacological effects of Magnolia dealbata 
Zucc, used in traditional Mexican medicine as a tranquilizer 
and to treat epilepsy have been tested in CNS disorders (e.g., 
spinal cord injury) and found to increase functional motor 
recovery in experimental animals and in epilepsy, delay the 
onset of phentylene tetrazolium (PTZ) induced myoclonus 
and clonus, and reduce the occurrence of tonic seizures and 
mortality (Martínez et al. 2006). 

 Prolyl oligopeptidase is associated with schizophrenia, 

Chemical�structure�of�3�
fenilcromen�4�ona�(3�fenil�1,4�
benzopirone),�the�isoflavonoid
skeleton

Chemical�structure�of�2�
fenilcromen�4�one�(2�phenyl�1�,4�
benzpyrone),�the�skeleton�of�
flavonoids.

4�fenilcumarine�(4�phenyl�1,2�
benzopyrone),�the�chemical�
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Chemical�structure�of�resveratrol
5�[(E)�2�(4�ydroxyphenyl)��
ethenyl]benzene�1,3�diol

 
Fig. 4 Chemical structures of some flavonoids. 

17



Antioxidants and neurodegenerative diseases. Domínguez et al. 

 

bipolar affective disorders, and other related neuropsychi-
atric disorders and may have important clinical implications. 
The flavonoid baicalin, isolated as the active component of 
an extract from the root of S. baicalensis, has an important 
prolyl oligopeptidase inhibitory activity. This new pro-drug 
has a long history of safe administration in humans, making 
it an attractive base from which to develop new treatments 
for neuropsychiatric diseases (Tarragó et al. 2008). 

Currently, many of the molecular mechanisms respon-
sible for the neurological bioactivity of medicinal plants are 
unknown, as are the constituents responsible for their bioac-
tivity. However, these plants have clear potential as attrac-
tive targets for future studies to understand their molecular 
mechanisms of action, identify the active constituents, and 
uncover new alternatives to our limited therapeutic arsenal 
for the treatment of the majority of neurodegenerative dis-
eases, especially for those therapies with side effects that 
limit their effectiveness. 

 
Pharmacology of natural antioxidants 
 
Medicinal plants with CNS activity have an extensive his-
tory in Mexico. The following is a review of the pharmacol-
ogy of Mexican plants investigated for their antioxidant 
activity and/or evaluated as a treatment for brain disorders. 
This review also highlights the identification and evaluation 
of the bioactive compounds. 

Free radicals or oxidative injury now appear to be the 
fundamental mechanism underlying a number of human 
neurological (and other) disorders, which may be reverted 
and prevented by the presence of antioxidant constituents 
from plants (Polterait 1997; Pietta 2000; Joseph et al. 2005; 
Wolfe and Liu 2007, 2008). Animal models and human stu-
dies are the best methods to determine the actual efficacy of 
antioxidants in the body. However, in vitro methods are the 
strategy most often used to evaluate the antioxidant proper-
ties of plants. According to Mermelstein (2008) the most 
widely used in vitro methods are oxygen radical absorbance 
capacity, total radical-trapping antioxidant parameter, Tro-
lox equivalent antioxidant capacity, total oxyradical scaven-
ging capacity, peroxyl radical scavenging capacity, ferric 
reducing/antioxidant power, the Folin-Ciocalteau total 
phenolic assay, and the 2,2-diphenylpicrylhydrazyl (DPPH) 
assay. Currently, a method proposed for the in vivo analysis 
of antioxidant properties is the use of dichlorofluorescin, 
which is a compound that is easily oxidized to the fluo-
rescent compound dichlorofluorescein in human cells. A de-
crease in cellular fluorescence compared to control cells 
indicates the antioxidant capacity of the tested compounds 
(Mermelstein 2008). 

The DPPH test (Wagner and Bladt 1996) may be the 
most frequently used method in the research of antioxidant 
properties of plant extracts (Wolfe and Liu 2007; Mermel-
stein 2008; Wolfe and Liu 2008). This test provides infor-
mation on the reactivity of test compounds with a stable 
free radical. Due to its odd electron, DPPH gives a strong 
absorption band at 517-523 nm in visible spectroscopy (i.e., 
a deep violet color). As the electron is paired in the pre-
sence of a free radical scavenger, the absorption decreases. 
The resulting decolorization is stoichiometric with respect 
to the number of electrons taken up. 

 
Mexican plants and antioxidant activity evaluation 
 
Mexico has an extensive variety of plants; it is the fourth 
richest country worldwide in this respect, with 25,000 spe-
cies registered. Further, it is hypothesized that nearly 30,000 
additional plant species have yet to be described (Adame 
and Adame 2000). Plants are known to be good sources of 
antioxidants, but their potency can vary depending on the 
species and growing conditions. Therefore, the antioxidant 
activity of these plants may vary considerably depending on 
where they are grown. The antioxidant capacity of many 
Mexican plants has been reported to be due to the presence 
of flavonoids. Flavonoids are natural substances that pos-

sess antioxidant and anti-radical properties (Nakayoma and 
Yamada 1995; Polterait 1997; Pietta 2000). Their antioxi-
dant activity depends on the chemical structure and the 
position and number of substituents in the flavonoid nuclei 
and in the B ring (Pietta 2000). The presence of a double 
bond between C-2 and C-3, a d–OH on C-3, and an ortho-
substitution on C-3’ and C-4’ in the B ring are indispensable 
for increasing antioxidant potency (Harborne 1984; Lien et 
al. 1999; Harborne and Williams 2000). 

Plants from northeastern Mexico have great medicinal 
relevance for many diseases in this region. The antioxidant 
properties of extracts prepared from 17 wild plants belong-
ing to different genera were tested (Torres et al. 2006; Sala-
zar-Aranda et al. 2009). From these species, only 8 dis-
played significant in vitro free radical (DPPH) scavenging 
activity between 10.5 and 35.2 μg/mL in comparison to 
quercetin as the positive control. EC50 for quercetin was 3.0 
μg/mL (8.9 μM) (Salazar-Aranda et al. 2009) similar to that 
reported by Torres et al. (2006). Extracts from the roots and 
bark were more effective than stems or leaves but less than 
flowers as follows: Ceanothus coeruleus > Chrysactinia 
Mexicana > Cyperus alternifolius > Schinus molle > Colu-
brina greggi > Phyla nodiflora > Heliotropium angiosper-
mum > Cordia boissieri (Salazar-Aranda et al. 2009). 
Investigating other plants from this region, the antioxidant 
properties of extracts other species (e.g., Turnera diffusa 
Wild. (Turneraceae), Cucurbita foetidissima Kunth (Cucur-
bitaceae), Flourensia cernua D.C. (Asteraceae), Selaginella 
pilifera A. Braun (Selaginellaceae), Juglans mollis Engelm. 
(Juglandaceae) and Centaurea americana Nutt. (Asteraceae 
alt. Compositae) prepared as methanol extracts were also 
evaluated by means of different assays. These assays in-
cluded the l,l-diphenyl-2-picrylhydrazyl radical test by 
high-resolution liquid chromatography (HPLC) and spectro-
photometry, the inhibition of XO activity, and total phe-
nolics content. Five plants showed high scavenging poten-
tial; their total phenolics content was also high. Further, the 
extracts from four plants inhibited the activity of XO. Two 
of the most promising plants, T. diffusa and J. mollis, did 
not show cytotoxicity and were recommended for the treat-
ment and prevention of degenerative illness due to their 
antioxidant potential (Salazar et al. 2008). 

Mexico is the main exporter of Mexican oregano (Lip-
pia graveolens), accounting for 35-40% of the international 
market. The high demand for Mexican oregano is due to the 
quality of essential oil contained in the leaf. However, a 
study of the antioxidant activity of the organic and aqueous 
extracts of oregano evaluated by the radical DPPH assay 
detected that the antioxidant activity was due to the pre-
sence of flavonoids, of which pilosin, cirsimartin, narigenin, 
kaempferol, isokaemferide, a derivative of catechin and a 
non-identified hexoside of quercetin were observed as pos-
sibly responsible (Valentao et al. 2002; González et al. 
2007). 

Pollen from the anthers of the flowers of Zea mays L. 
(Poaceae), Tagetes sp. (Compositae), Amaranthus hybridus 
L. (Amarantaceae), Solanum rostratum Dun. (Solanaceae), 
Bidens odorata Cav. (Compositae), and Ranunculus petio-
laris HBK (Ranunculaceae) collected from La Parrilla 
Durango, Mexico and prepared as hydroalcoholic extracts 
were evaluated for antioxidant activity and their correlation 
with phenol composition. Pollen from A. hybridus L. had 
the lowest antiradical activity (EC50 = 14 μg/ml). Extracts 
from Z. mays L., R. peitolaris HBK, and B. odorata Cav. 
had intermediate levels of activity (EC50 = 10.3, 9.9 and 9.3 
μg/ml, respectively) without significant differences between 
them, despite large differences in flavonol content. Pollen 
from S. rostratum Dun. showed a high level of antiradical 
activity (8.4 μg/ml), whereas extracts from Tagetes sp. had 
the highest antiradical activity (6.8 μg/ml). These results 
provide evidence that compositions of the flavonol and phe-
nolic acids, rather than their concentrations, may be a deter-
mining factor in the antiradical activities of these plants 
(Almaraz et al. 2004). 

Sixty-six extracts prepared as hexane, acetone and 
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methanol extracts from 22 species of plants collected in the 
state of Morelos in southern Mexico were studied for sca-
venging and antioxidant activities using DPHD and the �-
carotene bleaching method. The latter method consists of 
measuring the ability of extracts to minimize the coupled 
oxidation of �-carotene and linoleic acid in an emulsified 
solution, which loses its orange color when reacting with 
the radicals. In this study, only nine of the plant extracts 
prepared with methanol displayed major antioxidant activity, 
and a clear relationship between the total phenolic content 
of the extracts and their antioxidant activity was found. 
Phenolic content decreased as follows: Licaria arborea 
Seem (Chysobalanaceae), Bunchosia canesens (Malphigi-
aceae), Syderoxylon capiri (Sapotaceae), Annona squamosa 
L. (Annonaceae), Piper leucophyllum C.D.C. (Piperaceae), 
Swietenia humidis Zucc. (Meliaceae), Rupechtia fusca 
(Polygonaceae), Bursera grandifolia Engl. (Burseraceae), 
Pseudobombax ellipticum HB&K (Bombaceae) and Como-
cladia engleriana (Anacardiaceae). The methanolic extract 
of L. arborea exhibited the highest total phenolic content 
value (Ruiz-Terán et al. 2008). 

 
Mexican plants with effects on CNS 
 
In traditional Mexican medicine, plant preparations are 
taken orally and administered repeatededly to control sei-
zures. The flowers of Magnolia grandiflora, “flower of the 
heart”, Mexican Talauma “yolloxóchitl” (Martínez 1959; de 
la Cruz 1964; Lozoya 1998) and Ruta chalepensis L. (Agui-
lar and Tortoriello 1996) have traditionally been used to 
treat epilepsy. 

Magnolia dealbata Zucc. (Magnoliaceae) is a plant with 
a limited distribution in six populations of the cloud forests 
located in the south-central region of Mexico (Hernández 
1980). In mice, M. dealbata produces a significant and 
dose-dependent reduction in anxiety. The major components 
responsible for this activity are two neolignans, magnolol 
and honokiol (Martínez et al. 2006), and these compounds 
are considered the active phenolic compounds responsible 
for the central depressant action (i.e., eliciting muscle rela-
xation, sedation, sleep induction and anesthesia) of M. deal-
bata in mice (Watanabe et al. 1975, 1983). These com-
pounds have antioxidant activity preventing lipid oxidation 
that is weaker than that of �-tocopherol but stronger than 
caffeic acid > p-ethylphenol > guaiacolas, as measured by 
the thiobarbituric acid assay (Ogata et al. 1997). Regarding 
the effects of R. chalepensis, this species replicated the anti-
convulsant effect of diazepam (1 mg/kg), delaying the pre-
sence of seizures and reducing tonic convulsions and mor-
tality in animal models (González et al. 2006). 

Plants such as Annona squamosa and Sapium macro-
carpum display two-fold greater antioxidant activity than 
the commercial butylated hydroxyanisole antioxidant (Ruiz 
et al. 2008). Species from the Annona genus are a good re-
source for therapies for CNS diseases. Annona diversifolia 
Saff. (Annonaceae) is an indigenous Mexico tree that has 
many local names, such as ilama (“old” in the Nahuatl lan-
guage), ilama zapote, ilamazapotl, izlama, hilama, papausa, 
papauce, and zapote de vieja (Ruíz and Morett 1997). The 
fruits of this plant are used for food, and the leaves are 
popularly used for their antiepileptic properties. The neuro-
pharmacological profile of an ethanol extract of A. diversi-
folia demonstrated a significant and dose-dependent delay 
in the onset of PTZ-induced seizures and reduced mortality 
in mice (González et al. 1998). This effect was also previ-
ously reported for Annona muricata L. (N’Gouemo et al 
1997). 

 
CONCLUDING REMARKS 
 
Despite the complex and diverse genetic and epi-genetic 
factors underlying the manifestations of different neuro-
degenerative diseases, there are strong reasons to believe 
that oxidative stress is a common factor that plays a central 
role in the pathogenesis of these diseases. Indeed, many 

pathological conditions are associated with ROS production 
from mitochondria. Various phenolic compounds and their 
isomers derived from medicinal plants have potent antioxi-
dant effects. For example, the assessments of the Mexican 
plants described in this review suggest that flavonoids are 
widely distributed, secondary metabolites with antioxidant 
and antiradical properties, from which we can derive poten-
tial new treatments for neurological disorders. It is impor-
tant that basic and clinical researchers focus on gathering 
scientific evidence to reinforce the application of both 
plants and their potential active metabolites for the treat-
ment of neurological diseases. These studies support the use 
of plant-derived phenolic supplements in promoting general 
health and the prevention of age-related diseases in humans. 
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