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ABSTRACT 
The recent developments in metabolomics technologies have facilitated a comprehensive examination of the rich chemical composition of 
plants. Both gas and liquid chromatography based separation combined to high mass accuracy mass spectrometry as well as structural 
elucidation utilizing 2D NMR are currently frequently applied in metabolite profiling approaches for various plant species, including 
strawberry. With these technologies, the knowledge of the metabolite composition of strawberry has been expanded to include numerous 
different derivatives of well-known metabolites. Furthermore, metabolite classes previously unknown for this species have been identified. 
As in other plants, the array of natural products generated in different organs and cell layers of strawberry forms the basis for the chemical 
defense and interaction with the environment. The same compounds, when consumed in the diet are responsible for the bioactivity 
mediating beneficial health effects in humans. Strawberry produces large amounts of commonly occurring phenolic compounds such as 
phenolic acids, flavonols and anthocyanidins. The early developmental stages of strawberry fruit are characterized by abundant accumula-
tion of proanthocyanidin polymers that protect the developing fruit against pests, and give an astringent taste rendering it unappealing for 
consumption. One of the most abundant metabolite classes of strawberry fruit is ellagitannins, group of compounds restricted to a small 
number of plant species. Ellagitannins are likely to contribute to the beneficial health effects claimed for strawberry, as these compounds 
show e.g. anticarcinogenic activity in vitro. In this review we discuss the phytochemicals produced in the vegetative and reproductive 
organs of strawberry, both in terms of the plant's physiology and as a constituent of the human diet. The metabolome of strawberry is 
described in light of recent developments and application of cutting-edge analytical chemistry-based approaches for metabolomics 
analysis of complex plant matrices. 
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INTRODUCTION 
 
Strawberry, along with other fruits of the Rosaceae family 
including apples, pears, plums, peaches and raspberries, has 
a particularly rich secondary metabolite composition. The 
chemical profiles include hundreds of non-volatile and 
volatile compounds, the latter ones being responsible for the 
typical fruit aroma bouquet. These metabolites have been 
the subject of intensive investigations for decades. The 
focus has been either on a wide-range non-targeted meta-
bolite profiling, quantification of specific metabolite classes, 
or structural characterization of single phytochemicals. The 
metabolites most frequently analyzed from strawberry were 
phenolic compounds such as phenolic acids, flavonols 
(kaempferol and quercetin derivatives), anthocyanins (cya-
nidin and pelargonidin derivatives), proanthocyanidins, 
galloylglucoses and ellagitannins. Additionally, compounds 
of the terpenoid class, some nitrogen-containing metabolites, 
as well as various volatile metabolites have been identified 

in strawberry. Metabolites classified as micronutrients such 
as vitamin C and folate have been analysed to determine the 
nutritional quality of strawberry. These phytochemical ana-
lyses have served to develop a database for the nutritional 
composition and health considerations but have also in-
creased the knowledge about strawberry physiology. Both 
aspects will be reviewed here. 
 
METHODS USED FOR STRAWBERRY 
METABOLITE ANALYSIS 
 
By far the most frequently applied method in the analysis of 
strawberry metabolite composition is Liquid Chromatog-
raphy Mass Spectrometry (LC-MS) coupled with UV detec-
tion (Määttä-Riihinen et al. 2004; Seeram et al. 2006b; 
Aaby et al. 2007a; Hukkanen et al. 2007). The most recent 
applications, which combine efficient separation by Ultra 
Performance LC (UPLC) and accurate mass measurement 
with high-resolution mass spectrometers, allow qualitative 
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analysis of over hundred compounds in a single run (Fait et 
al. 2008; Hanhineva et al. 2008). Gas Chromatography-MS 
(GC-MS) is widely used in the analysis of polar metabolites 
in derivatized extracts (often primary/central metabolites; 
Fait et al. 2008) and aroma (volatile) compounds (Zabetakis 
and Holden 1997; Aubert et al. 2005). Nuclear Magnetic 
Resonance (NMR) spectroscopy has mainly been employed 
for unambiguous structure elucidation of strawberry sec-
ondary metabolites, often in combination with LC-MS 
analysis (Ishimaru et al. 1995; Hirai et al. 2000; Hilt et al. 
2003; Hanhineva et al. 2009b). 

Several less common metabolite analysis techniques 
such as Fourier Transform Ion Cyclotron-MS (FTICR-MS; 
Aharoni et al. 2002) and Colloidal Graphite-Assisted Laser 
Desorption/Ionization MS (GALDI, Zhang et al. 2007) 
have also been applied for strawberry. Direct Infusion MS 
(DIMS) analysis has been demonstrated to be useful parti-
cularly in a quick comparison of the rich tannin signals in a 
large set of samples (McDougall et al. 2008). Laser-Induced 
Fluorescence Spectroscopy (LIFS) has been tested as a non-
destructive method to characterize phenolic compounds in 
the surface of strawberry fruit (Wulf et al. 2008). Finally, 
the autofluorescence of phenolic compounds can be used 
for simple visualization of differences in the composition of 
this metabolite class (Fig. 1). 

 
STRAWBERRY METABOLITE COMPOSITION 
 
The array of phenolic secondary metabolites found in 
strawberry is listed in Table 1. Several large-scale, non-
targeted metabolite profiling studies have been carried out 
on strawberry fruit (Aharoni et al. 2002; Määttä-Riihinen et 
al. 2004; Seeram et al. 2006b; Aaby et al. 2007a; Fait et al. 
2008), flowers (Hanhineva et al. 2008) and leaves (Huk-
kanen et al. 2007; Hanhineva et al. 2009a) by using LC-MS. 
A number of studies have focused on specific metabolite 
classes, e.g. phenolic acids (Mattila and Kumpulainen 2002; 
Mattila et al. 2006), ellagitannins (Okuda et al. 1992; Cerda 
et al. 2005), anthocyanins (Nyman and Kumpulainen 2001; 
Lopes da Silva et al. 2002; Koponen et al. 2007), proantho-
cyanidins (Gu et al. 2003; Buendía et al. 2009; Hellström et 
al. 2009) and flavonols (Häkkinen and Auriola 1998). Seve-
ral strawberry secondary metabolites have been identified 
based on structural elucidation with 2D NMR. These in-
clude, the characterization of phenylpropanoid derivatives 
(Hanhineva et al. 2009b); phloridzin (Hilt et al. 2003); 1-O-
trans-cinnamoyl-�-D-glucopyranose (Latza et al. 1996); E-
cinnamic acid derivatives in the progenitor of the garden 
strawberry (Fragaria chiloensis) (Cheel et al. 2005); ellagic 
acid derivatives (Heur et al. 1992); valerophenone deriva-
tive (Tsukamoto et al. 2004); 5-carboxypyranopelargonidin 
(Andersen et al. 2004); anthocyanin-flavan-3-ol metabolites 
(Fossen et al. 2004); taxifolin 3-arabinoside in strawberry 
roots (Ishimaru et al. 1995); and triterpenes (Hirai et al. 
2000). 

The structurally simplest phenolics are phenolic acids, 

i.e. the hydroxylated derivatives of benzoic and cinnamic 
acids, which are frequently conjugated with sugars. They 
serve as precursors for a wide array of secondary meta-
bolites including benzoates, salicylates, coumarins, lignans, 
lignin and flavonoids. In strawberry fruit, the predominant 
phenolic acid is coumaric acid present as glycosides (Mat-
tila et al. 2006). It is also found in other organs including 
leaves (Hukkanen et al. 2007; Hanhineva et al. 2009a) and 
flowers (Hanhineva et al. 2008). It may also be present as a 
substituent in other compounds such as flavonols and sper-
midines (Hanhineva et al. 2008). Other phenolic acids fre-
quently detected in strawberry, especially in the fruit, are 
glucose derivatives of cinnamic, caffeic, ferulic and sinapic 
acids (Table 1). 

All strawberry flavonoids contain a flavonoid backbone 
hydroxylated in positions 3’ and/or 4’of the B-ring (Fig. 2). 
Unlike in many other flavonoid-rich plants, enzymatic acti-
vity for the hydroxylation of the B-ring 5’ position has not 
been reported in strawberry, and thus the main flavonoid 
metabolites are derivatives of the flavonols kaempferol and 
quercetin, the anthocyanidins, cyanidin and pelargonidin, 
and the flavan 3-ols (epi)catechin and (epi)epiafzalechin. In 
planta, flavonoids do not normally occur as free aglycones 
but are decorated e.g. with sugars and phenolic acids (Table 
1). 

The presence of two metabolite groups with large 
macromolecular structures, i.e. the proanthocyanidins (con-
densed tannins) and ellagitannins (hydrolyzable tannins) are 
typical to strawberry. The proanthocyanidins occur as linear 
molecules of the flavan 3-ol units (epi)catechin and (epi)af-
zalechin linked via a C4�C8 bond (B-type interlinkage). 
They are typically present as oligomers (Gu et al. 2003), 
but also polymers as large as decamers have been reported, 
especially at the early developmental stages of strawberry 
fruit (Fait et al. 2008). A recent analysis of proanthocyani-
dins showed variation both in the degree of polymerization 
and the quantity among fifteen strawberry cultivars (Buen-
día et al. 2010). 

Ellagitannins occur in plants much less frequently than 
do proanthocyanidins but they are often produced by spe-
cies in the Rosaceae family (Okuda et al. 1992). Unlike the 
majority of phenolic compounds generated via the phenyl-
propanoid pathway, ellagitannins are synthesized from gal-
lic acid units that are intermediates in the shikimate path-
way (Gross 1994). Ellagitannins occur as a myriad of dif-
ferent combinations of sugar core units with several con-
jugated gallic acid moieties, which can be further inter-
linked to form hexahydroxydiphenyl (HHDP) units (Fig. 2). 
Qualitative analysis of strawberry ellagitannins is in its 
early stages but recent reports indicate that several parts of 
the strawberry plant are rich in ellagitannins (Fait et al. 
2008; Hanhineva et al. 2008). The most abundant macro-
molecular ellagitannins identified in strawberry fruit in-
clude lambertianin C, sanguiin H-6 and galloyl-bis-HHDP-
glucose (Seeram et al. 2006b; Aaby et al. 2007a; Buendía et 
al. 2010). The HHDP units are easily released from ellagi-
tannins, leading to the formation of ellagic acid, which is 
found in strawberry fruit together with various precursors of 
ellagitannins, i.e. galloyl glucoses (Table 1). 

In addition to the commonly occurring phenolic com-
pounds, strawberry contains some metabolites that have re-
ceived little attention, such as the phenylethyl derivatives of 
phenylpropanoids (Hanhineva et al. 2009a, 2009b). One of 
the most intensively studied natural products, resveratrol, 
has been rarely reported in strawberry fruit and achenes 
(Ehala et al. 2005; Wang et al. 2007). Resveratrol has never 
been found in strawberry in profiling studies, as it is most 
likely present in detectable quantities only after induction or 
after specific purification. The lignans secoisolariciresinol 
and matairesinol were found in strawberry some years ago 
when their metabolism to enterolactone and enterodiol (lig-
nan derivatives formed in mammals from plant lignans by 
intestinal bacteria) was studied by GC-MS (Mazur et al. 
2000). An interesting flavonoid known to occur in straw-
berries but rarely reported in metabolomics studies is fisetin, 

Fig. 1 Confocal microscopic examination of A. Whole strawberry 
flower, B. Mature stamen. The fluorescent images were obtained with an 
Ultraview® confocal scanner (Perkin Elmer Life Sciences, Wallac-LSR, 
Oxford, UK), on a Nikon Eclipse TE300 microscope (Nikon, Tokyo, 
Japan). The wavelengths were: Green: excitation 488 nm, emission 525 
nm; red: excitation 568 nm, emission 607 nm; blue: excitation 647 nm, 
emission 700 nm. In A wavelengths for only green and red were used. 
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Table 1 Aromatic and phenolic metabolites reported in strawberry plants. 
COMPOUND MW �max (nm) Plant part  Analytics Reference 
Benzoic acid derivatives           

benzoic acid 122  fruit FTMS 6 
hydroxybenzoylhexose 300 262 fruit LC-MS 2, 21 
hydroxybenzoic acid 138  fruit FTMS 6 
vanillic acid 168  fruit FTMS 6, 21 
di-hydroxybenzoquinone 140  fruit FTMS 6 
di-hydroxy benzoic acid hexose 316  fruit LC-MS 21 

Cinnamic acid derivatives      
p-coumaric acid glucoside 326 264, 293 fruit, flower, leaf LC-MS 1, 19, 20, 22 
p-coumaroyl hexose 326 236, 300sh,310 fruit LC-MS 1, 2, 3, 5 
p-coumaroylhexose-4-O-hexoside 488 312 fruit LC-MS 2 
p-coumaroyl-ester 356 235, 330 fruit LC-MS, NMR 3, 18 
di-coumaroyl hexose 472  flower, leaf LC-MS 19, 20 
caffeoylglucose, caffeic acid hexose 342 264, 300sh, 330 fruit, flower LC-MS 1, 19, 22 
caffeate 180  fruit FTMS 6 
ethyl cinnamate 176  fruit FTMS 6 
methyl cinnamate 162  fruit FTMS 6 
hydroxyferulate 210  fruit FTMS 6 
4-coumarate 164  fruit FTMS 6 
sinapyl alcohol 210  fruit FTMS 6 
cinnamate glucose 310  fruit FTMS 6 
cinnamoyl-xylopyranoside 280 284 fruit NMR 10 
cinnamoyl-rhamnopyranoside 294 284 fruit NMR 10 
cinnamoyl-xylofuranosyl-glucopyranose 442 284 fruit NMR 10 
cinnamoyl-glucopyranoside  287 fruit NMR 14 
chlorogenic acid 354 sh-323 flower, leaf, fruit LC-MS 19, 20, 22 
ferulic acid hexose 356 sh-328 Flower, fruit LC-MS 19, 22 
galloyl caffeoyl hexose 494 252, 367 flower LC-MS 19 
galloyl coumaroyl hexose 478  flower, leaf LC-MS 19, 20 
coumaroyl quinic acid 338  flower LC-MS 19 

Phenylethyl derivatives of phenylpropanoid glucosides      
hydroxyphenylethyl coumaroyl glucopyranoside (Eutigoside A) 446 311 fruit, leaf LC-MS 21, 22 
hydroxyphenylethyl feruoyl glucopyranoside (Grayanoside A) 476 320 fruit, leaf LC-MS 21, 22 
hydroxyphenylethyl caffeoyl glucopyranoside 462  leaf LC-MS 21 

Gallic acid and ellagic acid derivatives          
ellagic acid 4-pentoside 435 252, 362 fruit LC-MS 1 
ellagic acid pentoside 434 254, 360 fruit, leaf, flower LC-MS 2, 5, 19 
ellagic acid 302 252, 368 fruit, leaf, flower FTMS, LC-MS 1, 2, 3, 5, 6, 12, 19, 22
ellagic acid acetylpentoside 476 254, 358 fruit, leaf LC-MS 1 
ellagic acid deoxyhexoside 448 254, 362 fruit, leaf, flower LC-MS 2, 5, 19, 22 
methyl-ellagic acid pentose 448 250, 370 fruit LC-MS 3 
ellagic acid hexose 464  flower, leaf LC-MS 5, 19 
glucogallin, galloylglucose 332 276 fruit, leaf, flower FTMS, LC-MS 6, 19, 20, 22 
galloylquinic acid 344 270 fruit, flower, leaf LC-MS 19, 20, 22 
di-galloylquinic acid 496  fruit, flower LC-MS 19, 22 
di-galloylglucose 484 276 flower LC-MS 19 
tri-galloylglucose 636 272 fruit, flower, leaf LC-MS 19, 20, 22 
tetra-galloylglucose 788 278 fruit, flower LC-MS 19, 22 
penta-galloylglucose 940 277 fruit, flower, leaf LC-MS 19, 20, 22 

Ellagitannins           
HHDP-glucose 482 slope fruit, flower LC-MS 19, 22 
bis-HHDP-glucose 784 232, slope fruit, leaf, flower LC-MS 2, 19, 20, 22 
galloyl-HHDP-glucose 634 232, slope fruit, leaf, flower LC-MS 2, 21, 20, 22 
HHDP-galloyl-glucose 634 300sh, 284 fruit LC-MS 2 
galloyl-bis-HHDP-glucose 936 234 fruit, leaf LC-MS 2, 20, 22 
di-galloyl HHDP glucose 786 270 fruit, flower LC-MS 19, 22 
sanguiin H6 1870 260, 345 fruit LC-MS 3 
sanguiin H10, (bis HHDP glucose)-dimer 1568 230, 280sh fruit, leaf LC-MS 5, 22 
tri-galloyl-HHDP glucose 938  fruit, flower, leaf LC-MS 19, 20, 22 
di(HHDP-galloylglucose)-pentose 1416 225 leaf LC-MS 5 
casuarictin 936 225, 280sh fruit, flower, leaf LC-MS 5, 19, 22 
trigalloyl-triHHDP-diglucose 1718 230, 280sh leaf LC-MS 5 
potentillin 936 230, 260sh, 

280sh 
fruit, flower, leaf LC-MS 5, 19, 20, 22 

agrimoniin 1870 230, 260sh, 
280sh 

fruit, flower, leaf LC-MS 5, 19, 20, 22 

lambertiain C 2804  fruit LC-MS 22 
pedungulagin   root NMR 7 

Chalcones           
phloretin 274  fruit LC-MS, NMR 15 
phloridzin 436  fruit LC-MS, NMR 15 
naringenin/naringenin chalcone hexose 434  fruit LC-MS  22 
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Table 1 (Cont.) 
COMPOUND MW �max (nm) Plant part  Analytics Reference 
Flavanones           

dihydrokaempferol (aromadendrin) 288  fruit FTMS 6 
dihydroquercetin (taxifolin) 304  fruit FTMS 6 
taxifolin 3-arabinofuranoside 436  root NMR 7 
eriodictyol hexose 450  fruit LC-MS 22 

Flavones           
apigenin 270  fruit GALDI-MS 16 
apigenin glucoside 432  fruit GALDI-MS 16 

Flavan-3-ols, proanthocyanidin           
(+)-catechin 290 278/280 fruit, flower, leaf, 

root 
FTMS, LC-
MS, NMR 

1, 2, 3, 6, 7, 19, 20, 22

(-)-epicatechin 290 278 fruit LC-MS 1, 22 
(+)-afzelechin-catechin   root NMR 7 
dimer B2 578 278 fruit, leaf, flower LC-MS 1, 5, 19, 20, 22 
proanthocyanidin B1 578 310,286 fruit LC-MS 2 
proanthocyanidin B3 578 312sh, 284 fruit, root LC-MS, NMR 2, 7 
procyanidin tetramer 1154 277 fruit, flower LC-MS 19, 22 
procyanidin pentamer 1442 277 fruit, flower LC-MS 19, 22 
proanthocyanidin trimer�(EC-4,8-EC-4,8-C) 866 284 fruit, leaf, flower LC-MS 2, 19, 20, 22 
procyanidin B6   root NMR 7 
propelargonidin dimer (afz-cat) 562 277 fruit, flower LC-MS 17, 19, 22 
propelargonidin trimer (afz-cat-cat) 850 276 fruit, flower LC-MS 17, 19, 22 
propelargonidin tetramer (afz-cat-cat-cat) 1138  fruit LC-MS 22 
propelargonidin trimer (afz-afz-cat) 834  fruit LC-MS 22 

Flavonols           
quercetin 3-glucoside (quercetin hexose) 464  354, 285 fruit, flower LC-MS, FTMS 1, 3, 6, 19 
quercetin di-hexose 626  flower LC-MS 19 
quercetin hexose glucuronide 640 260, 353 flower LC-MS 19 
quercetin pentose glucuronide 610 255, 353 flower, leaf LC-MS 19, 20 
quercetin 3-glucuronide 478 354, 258 fruit, leaf, flower LC-MS 1, 2, 3, 5, 19, 20, 22 
quercetin 3-glucurone-deoxyhexoside 624 254, 300sh, 354 fruit LC-MS 1 
quercetin-3-malonylglucoside, (quercetin malonylhexose) 550 256, 354 fruit, flower LC-MS 2, 19 
quercetin-rutinoside (rutin) 610 255, 355 fruit LC-MS 3, 22 
quercetin-deoxyhexose-hexose (not rutin) 610 255, 295sh, 350 leaf LC-MS 5 
kaempferol 3-glucuronide 462 348, 265 fruit, leaf, flower LC-MS 1, 3, 5, 19, 20, 22 
kaempferol-3-glucoside, kaempferol hexose 448 266, 348 fruit, flower LC-MS 2, 19, 22 
kaempferol 3-malonylglucoside, kaempferol malonylhexose 534 266, 346 fruit, flower LC-MS 2, 5, 19, 22 
kaempferol 3-coumaroylglucoside (tiliroside) 594 268, 314/250 fruit, leaf, flower LC-MS, NMR 2, 3, 11, 18, 19, 20, 22
kaempferol acetylhexose 490  fruit LC-MS 22 
kaempferol di-hexose glucuronide 786 264, 345 flower LC-MS 19 
kaempferol di-pentose hexose glucuronide 888 265, 345 flower LC-MS 19 
kaempferol di-hexose 610  flower LC-MS 19 
kaempferol hexose glucuronide 624 264, 344 flower, leaf LC-MS 19, 20 
kaempferol pentose glucuronide 594 265, 345 flower, leaf LC-MS 19, 20 
isorhamnetin hexose 478  fruit LC-MS 22 
isorhamnetin 3-glucuronide 492 254, 300sh, 354 fruit, flower LC-MS 19, 22 
isorhamnetin sophorose hexose 802  flower LC-MS 19 
isorhamnetin di-hexose 640 253, 362 flower LC-MS 19 
isorhamnetin rutinose 624  flower LC-MS 19 
isorhamnetin hexose malonylhexose 726 253, 360 flower LC-MS 19 
leucocyanidin 306  fruit FTMS 6 

Anthocyanins           
cyanidin 3-glucoside, (cyanidin hexose) 449 280, 516 fruit LC-MS, NMR, 

FTMS 
1, 2, 3, 4, 6, 18, 22 

cyanidin hexose- deoxyhexoside 595 280, 516 fruit LC-MS 1 
cyanidin 3-sophoroside 611 280, 516 fruit LC-MS 1 
cyanidin 3-(2G-glucosylrutinoside) 757 280, 516 fruit LC-MS 1 
cyanidin 3-rutinoside 595 280, 516 fruit LC-MS 1, 4 
cyanidin 3-malonylglucose-5-glucose 697 524 fruit LC-MS 4 
pelargonidin 3-glucoside 433 276, 504, 428sh fruit LC-MS, NMR, 

FTMS 
1, 2, 3, 4, 5, 6, 8, 9, 18, 
22 

pelargonidin 3-rutinoside 579 276, 504 fruit LC-MS, NMR 1, 3, 4, 18, 22 
pelargonidin 3-malonylglucoside 519 276, 504, 430sh fruit LC-MS 1, 2, 5, 22 
pelargonidin 3-succinylglucoside 533 276, 504 fruit LC-MS 1 
5-pyranopelargonidin-3-glucoside 501 492, 358, 262sh fruit LC-MS 2 
pelargonidin 3-malonylrhamnoside or 3-succinylarabinoside 503 280, 430sh, 506 fruit LC-MS 2 
pelargonidin diglucoside 594/

595
275, 520/500 fruit LC-MS 3, 4 

pelargonidin 3-malylglucoside 549 503 fruit LC-MS 4 
pelargonidin hexose pentose acylated with acetic acid 607 503 fruit LC-MS 4 
pelargonidin 3-acetylglucoside 475 504 fruit LC-MS 4 
catechin-4,8-pelargonidin-3-glucoside 721 518, 438 fruit NMR 8 
epicatechin-4,8-pelargonidin-3-glucoside 721 518, 433 fruit NMR 8 
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shown in animal testing to be a memory-boosting meta-
bolite (Maher et al. 2006). 

Triterpenoid saponins (glycosylated triterpenoids) are a 
structurally diverse class of natural products. Their biolo-

gical role in plants is not fully resolved but they are sug-
gested to serve as antimicrobials and antifeedants (Osbourn 
2003; Sparg et al. 2004). The analysis of this class of meta-
bolites in strawberry has not been particularly intensive, 

Table 1 (Cont.) 
COMPOUND MW �max (nm) Plant part Analytics Reference 
Anthocyanins (Cont.)           

afzelechin-4,8-pelargonidin-3-glucoside  516, 434 fruit NMR 8 
epiafzelechin-4,8-pelargonidin-3-glucoside 705 520, 432 fruit NMR, LC-MS 8, 22 
5-carboxypyranopelargonidin-3-glucoside 501 360, 496 fruit LC-MS, NMR 9 
5-carboxpyranocyanidin-3-glucoside 517 278, 351, 505 fruit LC-MS, NMR 9 

Phenolic polyamine derivatives           
di-caffeoyl coumaroyl spermidine 615 218, 292 Flower LC-MS 19 
caffeoyl di-coumaroyl spermidine 599 218, 292 Flower LC-MS 19 
caffeoyl coumaroyl feruoyl spermidine 629 225, 301 Flower LC-MS 19 
tri-coumaroyl spermidine 583 290 Flower LC-MS 19 
di-coumaroyl feruoyl spermidine 613 292 Flower LC-MS 19 
coumaroyl di-feruoyl spermidine 643 292 Flower LC-MS 19 

Others           
L-(+)-ascorbic acid 176 244 fruit FTMS, LC-MS 6, 2 
quinic acid 192 225, 270 fruit, leaf FTMS, LC-MS 5, 6 
gentisic/protocatechuic acid 154  fruit FTMS 6 
N-propyl carbazole 209  fruit FTMS 6 
3-methylcatechol 124  fruit FTMS 6 
1,4-benzoquinone 1008  fruit FTMS 6 
2-glucopyranosyloxy-4,6,-dihydroxyisovalerophone 372 225, 286 fruit NMR 11 
trans-resveratrol 228 320 fruit LC-MS 13 
cis-resveratrol 228 288 fruit LC-MS 13 
3,4,5-trihydroxyphenyl acrylic acid     fruit LC-MS 18 
MW, molecular weight; HHDP, hexa-hydroxyl di-phenyl; afz, afzelechin; cat, catechin 
References: 1: Määttä-Riihinen et al. 2004; 2: Aaby et al. 2007a; 3: Seeram et al. 2006b; 4: Lopes da Silva et al. 2002; 5: Hukkanen et al. 2007; 6: Aharoni et al. 2002; 7: 
Ishimaru et al. 1995; 8: Fossen et al. 2004; 9: Andersen et al. 2004; 10: Cheel et al. 2005; 11: Tsukamoto et al. 2004; 12: Heur et al. 1992; 13: Wang et al. 2007; 14: Latza et 
al. 1996; 15: Hilt et al. 2003; 16: Zhang et al. 2007; 17: Gu et al. 2003; 18: Zhang et al. 2008; 19: Hanhineva et al. 2008; 20: Hanhineva et al. 2009a; 21: Hanhineva et al. 
2009b; 22: Fait et al. 2008. 

 

 
Fig. 2 Chemical structures of typical strawberry secondary metabolites. 
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although a few reports showed that at least the triterpenoids 
and their glucose derivatives are found in several straw-
berry organs (Hirai et al. 2000; Fait et al. 2008; Hanhineva 
et al. 2008). Interestingly, visual comparison of total ion 
chromatograms of different strawberry organs indicates that 
the last few minutes in the chromatogram, which is the 
region in which saponins (triterpenoid glucosides) are typic-
ally eluted, is particularly rich in the roots (Fig. 3). 

Polyamines are nitrogenous compounds which can be 
conjugated with small molecules such as phenolic acids. 
These conjugates have been studied particularly in the flow-
ers (Martin-Tanguy 1997), and were shown to be present as 
different sets of phenolic acid conjugates (Hanhineva et al. 
2008). 

Compounds that contribute to the flavor and aroma of 
ripe strawberry fruit, and several enzymes involved in their 
biosynthesis are well characterized (Aharoni et al. 2000; 
Lunkenbein et al. 2006a). Terpenoids are among the most 
important contributors to the aroma, and in cultivated straw-
berry the monoterpene linalool and the sesquiterpene nero-
lidol are the most characteristic compounds (Aharoni et al. 
2004). Additionally, many other methylated volatile deriva-
tives of phenolic acid precursors synthesized in a branch of 
phenylpropanoid pathway contribute to the aroma (Zabeta-
kis and Holden 1997). The primary metabolite content and 

the volatile aroma compounds of strawberry, including 
acids, alcohols, aldehydes, ketones, esters, lactones, acetals, 
furans, sulphur containing compounds and terpenes have 
been reviewed by Zabetakis and Holden (1997). A more 
recent report deals with common aroma volatiles during 
ripening of wild strawberry fruit (Gonzalez et al. 2009). 

 
DEVELOPMENTAL EFFECTS ON STRAWBERRY 
METABOLITES 
 
The phytochemical composition of plants is highly respon-
sive to internal and external stimuli. Thus, metabolite com-
position varies with the developmental stage, in different 
organs as well as in response to environmental perturbations 
such as UV radiation and disease. A clear difference in the 
metabolite profile of various parts of the strawberry plant is 
shown in Figs. 3 and 4. Interestingly, strawberry root ap-
pears to contain a wide array of secondary metabolites but 
this organ has not been extensively studied, as only few 
papers mention the analysis of secondary metabolites in 
strawberry root (Ishimaru et al. 1995; Aharoni et al. 2004). 
The roots clearly represent an almost unexplored resource 
for phytochemical research of strawberry, as the total ion 
chromatograms indicate that they are rich in semi-polar 
compounds (Figs. 3 and 4). In contrast to the roots, the phy-

 
Fig. 3 Total ion chromatograms of strawberry flower (upper panel), mature green leaf (middle panel) and root (lower panel) obtained by UPLC-
qTOF-MS analysis with ES(-) ionization. Examples of metabolites are indicated with MS/MS spectrum in ES(-). 
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tochemicals present in strawberry fruit have been described 
extensively. More than a hundred metabolites have been 
reported in the literature, showing both qualitative and 

quantitative differences among different cultivars and 
organs (Table 1 and references therein). 

One of the most extensively studied topics is the dif-

 
Fig. 4 Total ion chromatograms of immature white strawberry fruit (upper panel) and mature red fruit (lower panel) obtained by UPLC-qTOF-
MS analysis with ES(-) ionization. Examples of metabolites are indicated with MS/MS spectrum in ES(-). 

 
Fig. 5 Distribution of metabolites belonging to different metabolite classes in A. Strawberry fruit tissues (receptacle and achenes) and B. Floral 
organs. The blocks in the columns represent the sum of the average peak areas (Y-axis) of all identified metabolites in non-targeted metabolite profiling 
analysis. 
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ferential production of metabolites during fruit development. 
Alterations in fruit secondary metabolism are well documen-
ted and demonstrate a shift from the accumulation of the 
astringent proanthocyanidin polymers to coloured anthocya-
nins during maturation, as well as several other distinct 
compositional changes (Aharoni et al. 2002; Kosar et al. 
2004; Halbwirth et al. 2006; Fait et al. 2008). The amount 
of phenylalanine is very high at the early stages of develop-
ment as it serves as a precursor for proanthocyanidins, and 
its amount rises again at the very last stage of maturation 
enabling the development of anthocyanin colouration (Aha-
roni et al. 2002; Halbwirth et al. 2006). Changes also occur 
in the content of primary metabolites (Fait et al. 2008) as 
well as in volatile aroma and flavour components in garden 
strawberry (Menager et al. 2004) and its progenitor F. chilo-
ensis (Gonzalez et al. 2009). Maximal volatile (e.g. fura-
nones) production (Menager et al. 2004) as well as increase 
in esters (Gonzalez et al. 2009) take place in fully ripe red 
fruit. The phenolic composition of strawberry achenes has 
been analysed separately from the fruit flesh (receptacle). It 
appears that the achenes are extremely rich in phenolics 
both qualitatively and quantitatively (Aaby et al. 2005, 
2007b; Fait et al. 2008). 

Hanhineva et al (2008) recently published a detailed 
characterization of the metabolites in the floral organs of 
strawberry, which demonstrates the spatial distribution of 
different phytochemical classes and diverse derivatives of 
each metabolite class in the different parts of the flower 
(Fig. 5; Hanhineva et al. 2008). An overall difference in the 
phenolic composition of strawberry floral organs is illus-
trated in Fig. 1; the autofluorescence of phenolics is clearly 
visible under fluorescence confocal microscopy, pointing 
out the different distribution among the organs and even 
organ compartments (as shown by the different colours in 
the anther and filament of the stamen in Fig. 1b). Various 
flavonols as well as their sugar conjugates showed both 
qualitative and quantitative differences (Hanhineva et al. 
2008), suggesting that they play distinct roles in the flower. 
Flavonols are known to play a central role in plant fertility, 
being essential for pollen tube germination (Mo et al. 1992; 
Ylstra et al. 1994). 
 
INFLUENCE OF ENVIRONMENTAL FACTORS AND 
GENETIC MODIFICATION ON STRAWBERRY 
METABOLITE PRODUCTION 
 
Phytochemicals are important for the adaptation of sessile 
plants to their changing environmental conditions. One of 
the most important roles of phenolic compounds in planta is 
the protection against fungal and bacterial infections and 
other harmful environmental conditions such as UV radia-
tion. This has been demonstrated by the increase in phenolic 
compounds in the leaves after treatment of strawberry 
plants with benzothiadiazole, which induces natural plant 
defence (Hukkanen et al. 2007). On the other hand, when 
flavonoid synthesis was down regulated by genetic modifi-
cation (suppression of CHALCONE SYNTHASE), the straw-
berries had increased susceptibility to fungal infection, 
which was suggested to be due to the depletion of flavonols 
and other flavonoids (Hanhineva et al. 2009a). Antifungal 
metabolites have been found among the volatile compounds 
(Arroyo et al. 2007), triterpenes (Hirai et al. 2000; Terry et 
al. 2004) and phenolics (Terry et al. 2004) of strawberry 
fruit. Preharvest conditions and treatments clearly affect the 
levels of phenolic metabolites in strawberry (Anttonen et al. 
2006; Hukkanen et al. 2007; Wang et al. 2007). 

Metabolomics has proven indispensable in the charac-
terisation of strawberries with genetically modified phenyl-
propanoid pathway (Lunkenbein et al. 2006b; Hanhineva et 
al. 2009). A non-targeted profiling method was used to 
identify the changes that occurred in secondary metabolites 
following the transfer of a stilbene synthase-encoding gene 
(Hanhineva et al. 2009a). Unexpectedly introduction of the 
gene did not result in the production of resveratrol, but 
rather the accumulation of several phenolic acid derivatives 

in the central phenylpropanoid pathway was observed. 
Among the accumulating metabolites was also a group of 
compounds that could not be unambiguously identified by 
LC-MS. These compounds were subsequently subjected to 
2D-NMR analysis that led to the discovery of a yet uncha-
racterized metabolite class in strawberry, i.e. the phenyl-
ethanol derivatives of phenylpropanoid glucosides (Hanhi-
neva et al. 2009b). This metabolite class is not well-defined 
in plants, and clearly deserves more attention in the future. 

 
STRAWBERRY METABOLITES AS BENEFICIAL 
COMPONENTS IN THE DIET 
 
The importance of polyphenol-rich food in human health 
and prevention of diseases is well acknowledged, including 
anticarcinogenicity as well as lowering the risk of cardio-
vascular diseases and other aging-induced malfunctions. 
Especially ellagitannins have gained much attention because 
of their anticarcinogenicity (Kuo et al. 2007; Ross et al. 
2007). Strawberries are among the most important poly-
phenol sources both as fresh fruit and processed products 
and could have vital effects on human health if consumed 
regularly as part of a healthy diet (Hannum 2004; Zafra-
Stone et al. 2007; Tulipani et al. 2009). Estimations have 
been made about the phenolic content and intake of various 
food components in the diet, including the Finnish (Ovas-
kainen et al. 2008), French (Brat et al. 2006) and American 
diets (Chun et al. 2005). In the French diet, strawberries and 
apples are the main sources of polyphenols (Brat et al. 
2006). Besides ellagitannins, the minor flavonoids in straw-
berry such as the flavonols kaempferol and quercetin, as 
well as their precursor phenolic acids are targets of inten-
sive research in terms of assessing their bioactivity and 
bioavailability, and they most likely contribute to the heath-
beneficial characteristics of strawberry. 

The contents of several classes of polyphenol family 
and also of individual metabolites in strawberry consuma-
bles (i.e. food products) and fresh fruit are summarized in 
Table 2. Different studies include slightly different combi-
nations of compounds, and the results may also vary depen-
ding on the analytical method. Most often the content of 
total phenolics has been estimated (Kähkönen et al. 2001; 
Ovaskainen et al. 2008; Vasco et al. 2009). Studies on the 
contents of different phenolic classes include ellagitannins 
(Koponen et al. 2007), anthocyanins (Nyman and Kumpu-
lainen 2001; Koponen et al. 2007; Tulipani et al. 2008; 
Buendía et al. 2009), phenolic acids (Mattila and Kumpu-
lainen 2002; Mattila et al. 2006) and proanthocyanidins 
(Buendía et al. 2009; Hellström et al. 2009). Although the 
studies were typically focused on fruit, strawberry leaves 
are also a rich source of phytochemicals that could have 
potential e.g. in the development of food supplements, and 
should thus not be overlooked (Mudnic et al. 2009). 

The phenolic content of strawberry fruit decreases 
during industrial (Hartmann et al. 2008) and domestic 
(Häkkinen et al. 2000a, 2000b) processing. Processing of 
juices and purees is a significant source of variation in the 
anthocyanin content as these compounds may undergo 
structural changes caused by pH, light and oxidating en-
zymes (Aaby et al. 2007; Hartmann et al. 2008). Processing 
also usually removes the achenes, which are a rich source of 
e.g. ellagitannins both quantitatively (Aaby et al. 2005) and 
qualitatively (Fait et al. 2008). Even though the achenes 
constitute only 1% of strawberry fresh weight, they account 
for 11% of total phenolics and 14% of antioxidative capa-
city (Aaby et al. 2005) which is an important point of con-
sideration for strawberry processing. The achenes also help 
to preserve the phenolic content and antioxidative capacity 
of strawberry purees during storage (Aaby et al. 2007b). 

While the exact mechanisms and contributing com-
pounds have not been fully resolved (Crozier et al. 2009), 
the health-beneficial effects of polyphenol-rich fruits are 
most often ascribed to their antioxidative activity. However, 
in strawberry fruit, ascorbic acid is the most important 
single contributor to the antioxidative capacity while among 
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the polyphenols, ellagitannins and anthocyanins exhibit the 
strongest antioxidative properties (Scalbert et al. 2000; Yu 
et al. 2005; Mertens-Talcott et al. 2006; Aaby et al. 2007a, 
2007b). Although the conclusive proof for the mechanism 
of the proposed health-beneficial effects is lacking, new 
evidences are emerging from in vitro studies on cell lines 
showing antiproliferative effects on cancer cells (Olsson et 
al. 2006; Seeram et al. 2006a; Zhang et al. 2008) and anti-
bacterial activity on intestinal pathogens (Puupponen-Pimiä 
et al. 2005; Nohynek et al. 2006) exposed to strawberry ex-
tracts. 

Polyphenols have relatively low biavailability (Lotito 
and Frei 2006; Korkina 2007). Most studies focus on the 
soluble phenolic compounds that are readily absorbed from 
the fruit. Very few reports describe the importance of human 
colonic microbiota in the modification and absorption of the 
dietary polyphenols, including those from strawberry (del 
Rio et al. 2009). It is known, however, that a large propor-
tion of the polyphenols is bound to the matrix (e.g. fiber) 
and is released only by the activity of colonic microbiota. 
The few studies on strawberry metabolites include an ana-
lysis of the formation of urolithin from ellagitannin pre-
cursors in strawberry-rich diet (Cerda et al. 2005), and the 
production of important bioactive molecules from straw-
berry lignans as a result of the activity of colonic micro-
biota, as well as their urinary excretion after consumption 
of strawberries (Mazur et al. 2000). 

While the majority of studies focus on phenolic com-
pounds, strawberry fruit contains other nutritionally impor-

tant chemical constituents, such as vitamins and amino 
acids. Among the most promising nutrients is folate, the 
content of which in strawberry is 10 to 100 μg/100 g fresh 
weight (reviewed in Tulipani et al. 2009). There are thus 
several reasons to include strawberries in a healthy diet. 

 
CONCLUSIONS 
 
The recent year’s outcome of metabolite analyses using 
metabolomics technologies provided a significant addition 
to the existing data generated through targeted, less compre-
hensive analyses. While in most cases, particularly with 
MS-based methods, the identification of various metabolites 
is not unambiguous, it still provides very valuable informa-
tion for biological studies. However, minor constituents 
may have bioactivity and/or they can act synergistically 
with the more abundant metabolites and it is therefore 
essential to examine those compounds in detail as well. As 
described above, the repertoire of strawberry secondary 
metabolites is enormous, varying from organ to organ, in 
different tissues, and even from cell layer to layer. It is not 
clear at this stage if all of these chemicals are crucial for the 
plant life cycle. Therefore, a major future challenge will be 
to understand the role of this metabolite diversity in plant 
growth and fitness. The increasing knowledge about the 
composition of strawberry and other fruit species is also ex-
pected to inspire new discoveries regarding the value of 
strawberry and related species to human health and nut-
rition. 

Table 2 Content of phenolic compounds in strawberry. 
Compounds Reported values Reference 
Polyphenols in total   

Finnish FCDB 178 mg/100 g Ovaskainen et al. 2007 
strawberry jam 59 mg/100 g Ovaskainen et al. 2007 
French consumption 268 mg of GAE/100 g FEP Brat et al. 2006 
Ecuadorian 531 mg/kg FW Vasco et al. 2009 
Finnish FCDB 1600-2410 mg/100 g DW Kähkönen et al. 2001 

Total anthocyanin   
fruit, nine cultivars 99-296 μg/g FW Tulipani et al. 2008 
comparison of several studies 15-75 mg/100 g edible portion Rev. Lotito and Frei 2006 
fruit 32-52 mg/100 g FW Koponen et al. 2007 
strawberry jam 3 mg/100 g FW Koponen et al. 2007 
flesh and achenes, freeze dried and puree 11-68 mg/100 g FW Aaby et al. 2005 
fruit, three cultivars 195-232 mg/100 g DW Kähkönen et al. 2001 
fruit, 15 cultivars 20-47 mg/100 g FW Buendia et al. 2010 

Ellagitannins   
fruit and achenes separately, freeze dried and puree 9-833 mg/100 g FW Aaby et al. 2005 
fruit 68-85 mg/100 g FW Koponen et al. 2007 
strawberry jam 25 mg/100 g FW Koponen et al. 2007 
fruit, three cultivars 81-184 mg/100 g DW Kähkönen et al. 2001 
fruit, 15 cultivars 10-23 mg/100g FW Buendia et al. 2010 

Proanthocyanidins   
fruit and achenes separately, freeze dried and puree 10-32 mg/100 g FW Aaby et al. 2005 
fruit, three cultivars 8-10 mg/100 g DW Kähkönen et al. 2001 
fruit, 15 cultivars 54-163 mg/100 g FW Buendia et al. 2010 
fruit 34-57 mg/100 g FW Hellström et al. 2009 
strawberry jam 12 mg/100 g FW Hellström et al. 2009 

Flavonols   
fruit, three cultivars 6-20 mg/100 g DW Kähkönen et al. 2001 
fruit, 15 cultivars 2-3 mg/100 g FW Buendia et al. 2010 

Phenolic acids   
fruit, three cultivars (hydroxycinnamic acid) 47-63 mg/100 g DW Kähkönen et al. 2001 
fruit, three cultivars (hydroxybenzoic acid) 11-55 mg/100 g DW Kähkönen et al. 2001 
fruit, 15 cultivars (p-coumaroyl glucose) 1-7 mg/100 g FW Buendia et al. 2010 
fruit 10-18 mg/100 g FW Mattila et al. 2006 
strawberry jam 12 mg/100 g FW Mattila et al. 2006 

Phytoestrogens   
Secoisolariciresinol 15046 μg/kg DW Mazur et al. 2000 
Matairesinol 781 μg/kg DW Mazur et al. 2000 

Other   
folate 13-96 μg/100 g FW Rev. Tulipani et al. 2009 
FW, fresh weight; DW, dry weight; FCDB, Finnish national food compositin database; GAE, gallic acid equivalent; FEP, fersh edible portion 
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