Antifungal Activity and Acute Toxicity of the Methanolic Crude Extract and Fractions of Croton zambesicus Muell. Arg. (Euphorbiaceae)

Vincent Ngouana • Thierry Ngouana Kammalac • Patrick Valère Tsouh Fokou • Valerie Flore Donkeng Donfack • Fabrice Fekam Boyom* • Paul Henri Amyam Zollo

Laboratory of Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon

Corresponding author: * felen@yahoo.com

ABSTRACT

Fungal infections are increasingly a public health concern in the developing World. Due to drug resistance, high cost and side effects of available drugs, the development of new antifungals is an urgent issue. The aim of this study was to evaluate the antifungal activity and the acute toxicity of the stem bark of Croton zambesicus. The methanolic crude extract was fractionated by flash chromatography. After a phytochemical screening of the crude extract and fractions, their antifungal activity was assessed on three yeasts (Candida albicans, Candida krusei, Candida glabrata) and three dermatophytes (Microsporum langgeronii, Microsporum gyipseum, Trichophyton mentagrophytes). The acute toxicity was evaluated on Wistar male and female rats, aged about 8 weeks. The phytochemical screening revealed the presence of alkaloids, phenols, flavonoids, saponins, tannins and anthraquinones. The crude extract and fractions were found to be active on all fungal strains, with MIC values ranging from 0.048 to 0.195 mg/ml for yeasts and 3.125 to 6.250 mg/ml for dermatophytes. Almost all the fractions showed fungicidal action against the dermatophytes. No death was recorded up to a dose of 12 g/kg, showing that the crude extract is less toxic according to the WHO standards. The results achieved confirm the traditional use of C. zambesicus against fungal infections.

Keywords: biological activity, Croton zambesicus, fungi, toxicity

Abbreviations: DMSO, dimethyl sulfoxide; MIC, minimal inhibitory concentration; MFC, minimal fungicidal concentration

INTRODUCTION

Dermatophytes include the Microsporum, Trichophyton and Epidermophyton genera that cause cutaneous mycoses. Yeasts like Candida species and other filamentous fungi (Aspergillus spp.) are responsible for subcutaneous and invasive fungal infections. It has been reported that superficial and invasive mycoses are increasing since the last two decades, and constitute a major type of infections encountered in immunocompromised and diabetic persons and are classified at the fourth range of nosocomial infections (Syvie 2003; Bouguerra et al. 2004; Chabasse et al. 2004; Barčiš et al. 2006). The development of resistance to drug by pathogens and toxic side effects of available antifungal therapies (Ghannoum and Rice 1999; Sanglard and Odds 2002; Bouguerra et al. 2004; Chabasse et al. 2004; Barčiš et al. 2006; Thiel 2007; Azor 2007; Martinez-Rossi et al. 2008; Perlin 2009) have emphasized the search for new efficient and non-toxic antifungal drugs. Plants are a good source of antimicrobial agents (Adjanohoun et al. 1996; Facheux et al. 2003). Among them, Croton zambesicus, a Guineo-Congolese species of the large family of Euphorbiaceae, is used by traditional healers in the treatment of many infections. Its antiabdicative, vasorelaxant, antimalarial, anti-ulcer and anti-convulsive activities have been demonstrated (Ngadjui et al. 2002; Okokon et al. 2003, 2006; Bascelli et al. 2007; Okokon and Nwafor 2009). The petroleum ether extract of leaves has an antifungal activity (Abo et al. 1999) and the alkaloidal fraction of leaves’ ethanolic extract inhibits Aspergillus and Microsporum species (Block et al. 2004). Essential oils of the bark, leaves and roots were analyzed and contain terpenoids (Boyom et al. 2002). We report in this paper, the antifungal activity and acute toxicity of the stem bark of C. zambesicus.

MATERIALS AND METHODS

Plant material

The stem bark of C. zambesicus was collected at Mount Eloum-dem around Yaoundé Cameroon on January 04, 2008 and authenticated at the National Herbarium of Cameroon (Yaoundé) were a voucher specimen was deposited under the reference number 8204/SFR/CAM.

Extraction and fractionation

500 g of dried-powdered plant material were macerated with 98% methanol at room temperature for 48 h. After filtration and concentration under reduced pressure, using a rotary evaporator HEIDOPH WB 2000, the obtained crude extract was further fractionated by flash chromatography over silica gel, using hexane (Hex), ethyl acetate (EtOAc) and methanol (MeOH) solvent systems. The crude extract and subsequent fractions were used for antifungal and phytochemical screening.

Phytochemical screening

The crude extract and fractions were subjected to qualitative phytochemical screening for the presence of alkaloids, phenols, flavonoids, triterpenoids, saponins, anthraquinones, tannins, anthocyanins, coumarins, essential oils, steroids and lipids according to Harborne (1976) and Odeyibi and Sofowora (1978).

Antifungal tests

The fungal strains used in this study were obtained from the “Centre Pasteur du Cameroun”, Yaoundé. Inhibition of yeasts by the crude extract and fractions was as-
sessed by the agar well diffusion method (Ngono et al. 2000) and MIC values were determined by the broth dilution methods (Berge and Vlietnick 1991). Percentages of inhibition and MIC values were determined on dermatophytes by the food poisoning technique. MFC values were determined after sub-culturing the fungi.

Agar well diffusion method

Sterilized culture medium was poured on 90 cm Petri dishes. After solidification, an inoculum of yeasts strains standardized at 2.5 × 10⁵ CFU/ml on Malassez cell was spread on the solid medium. After a pre-incubation time of 15 min, wells were hollowed and 100 µl of the crude extract (50 mg/ml), fractions (25 mg/ml), positive control Amphotericine B (Sigma-Aldrich) (100 µg/ml) were individually introduced in separate wells and in triplicate. Inhibition zone diameters were measured after 48 h of incubation at 37°C.

Microdilution assay

The MIC values were determined using a microdilution method in 96 multi-wells microtiter plates, as previously described (Sarker et al. 2007), with slight modifications. The stock solutions of extracts were first diluted to the highest concentration to be tested, and thereafter diluted following a two-fold factor, using the nutrient broth, and 2.5% phenol red indicator The final concentrations were 25 to 0.024 mg/ml for the crude extract and 12.5 to 0.012 mg/ml for fractions. Finally, 10 µl of standardized fungal suspension was added to each well to obtain inoculums of 2.0 × 10⁴ CFU/ml. Amphotericine B was used as positive control and 10% DMSO (50 and 25 mg/ml for crude extract and fractions respectively) were incorporated into the growth medium and serially two-fold diluted and allowed to solidify. The resulting concentration was added to each well to obtain inoculums of 2.0 × 10⁴ CFU/ml. Amphotericine B was used as positive control and 10% DMSO as negative control. Plates were incubated in triplicate at 37°C for 48 h. MIC values were evaluated as the lowest concentration at which color change from red to yellow occurred.

Food poisoning assay

The antidermatophytic activity was assessed according to the agar dilution method (Favel et al. 1994) on SDA. Stock solutions in 10% DMSO (50 and 25 mg/ml for crude extract and fractions respectively) were incorporated into the growth medium and serially two-fold diluted and allowed to solidify. The resulting concentrations ranged from 50 to 3.125 mg/ml for the crude extract and 25 to 1.562 mg/ml for fractions. The so-prepared dishes were inoculated in triplicate with 7 days-old dermatophyte explants of 6 mm in diameter and incubated for 10 days at 30°C. Percentages of inhibition were determined as previously described (Ajaiyeboba et al. 1998). The MIC values defined as the lowest concentrations that show no visible fungal growth after the incubation time was recorded.

Subculture

Subculture was performed on non supplemented medium for 10 days using dishes where no visible growth was observed. The lowest concentration at which no growth was observed was defined as MFC. The MFC/MIC ratio was calculated to determine the type of activity exhibited by the considered extract.

Acute toxicity

Acute toxicity was assessed according to the WHO (2000) guidelines. Male and female albino Wistar rats weighing about 140 g and aged around 8 weeks from the animal house of the Laboratory of Toxicology and Pharmacology, Faculty of Science, University of Yaoundé 1 were used for the study. They were grouped into 5 animals per cage for each sex with free access to food and water and acclimatized for 7 days prior to the experiment. Doses of 4, 8, and 12 g/kg body weight of crude extract were orally administered. Control group was given distilled water. The animals were observed after the 2nd, the 24th and the 48th hour for any toxic symptoms or death.

| Table 1 Results of the phytochemical screening of the crude extract and fractions. |
|---|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| | C₀ | C₁ | C₂ | C₃ | C₄ | C₅ | C₆ | C₇ | C₈ |
| Alkaloids | + | - | - | - | - | - | - | - | - |
| Phenol | + | + | + | + | + | + | + | + | + |
| Flavonoids | + | - | + | + | + | + | + | + | + |
| Steroids | + | + | + | + | + | + | + | + | + |
| Saponines | + | + | + | + | + | + | + | + | + |
| Anthraquinones | + | + | + | + | + | + | + | + | + |
| Anthocyanes | + | + | + | + | + | + | + | + | + |
| Coumarins | + | + | + | + | + | + | + | + | + |
| Essential oil | + | + | + | + | + | + | + | + | + |
| Lipids | + | + | + | + | + | + | + | + | + |

(+) present, (-) absent, 0: not evaluated, g: crude extract, h: 100% Hex fraction, i: 25% Hex-EtOAe fraction, j: 50% Hex-EtOAe fraction, k: 75% Hex-EtOAe fraction, l: 100% EtOAe fraction, m: 5% EtOAe-MeOH fraction, n: 10% EtOAe-MeOH fraction, o: 15% EtOAe-MeOH fraction, p: 10% MeOH fraction

Statistical analyses

The results were presented as means ± SD. Data were analyzed using the SPSS 10.1 software for Windows. The mean values were compared using student’s t-test at P < 0.05.

RESULTS

Phytochemical screening

The phytochemical analysis showed the presence of alkaloids, phenols, flavonoids, saponines, anthraquinones, tanins, anthocyanins, essential oils, steroids and lipids, and the absence of triterpenoids and coumarins. Phenols and anthraquinones were concurrently found in the crude extract and fractions (Table 1).

Antifungal activity

The antifungal activity parameters of C. zambesicus extracts are summarized in Tables 2, 3, 4 and 5, in which the inhibition zone diameter, MIC, and MFC are presented. The crude extract and almost all the fractions were found to exhibit antifungal activity on dermatophytes and yeasts. They showed a broad range of inhibition zone diameters ranging from 0 to 24 mm (Table 2), the crude extract possessing the highest inhibition zone diameter on C. albicans (24.0 ± 0.6 mm), followed by fractions C₁ (18.0 ± 0.3 mm on C. albi- cans), C₄ (18.0 ± 0.6 mm on C. krusei) and C₅ (19.0 ± 1.1 mm on C. glabrata). Amphotericin B showed inhibition zone diameters ranging from 21 to 23 mm on all the yeasts. On the other hand, T. mentagrophytes, M. gypseum and M. langeronii were susceptible to the crude extract (50 mg/ml) and fractions (25 mg/ml) with 100% inhibition. MIC values for the crude extract and fractions were found to range from 0.048 to 1.562 mg/ml on yeasts. The crude extract was the most active on C. albicans (MIC = 0.048 mg/ml). It showed less potency on dermatophytes with MIC value of 12.5 mg/ml, compared to the fractions that showed MIC values ranging from 3.125 to 6.25 mg/ml (Table 3).

Subculture permitted the evaluation of the MFC values (Table 4) for active extracts. Moreover, the crude extract and fractions were fungicidal on almost all tested dermatophytes (Table 5).

Acute toxicity

The oral administration of a single dose varying from 4-12 g/kg in acute toxicity study showed no toxicity signs or death of animals after 48 h. The oral LD₅₀ value was considered to be above 12 g/kg in rats.
Table 2 Inhibition zone diameters (mm) of crude extract and fractions on yeasts strains.

<table>
<thead>
<tr>
<th>Yeast</th>
<th>C. albicans</th>
<th>C. krusei</th>
<th>C. glabrata</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>h</td>
<td>i</td>
<td>j</td>
</tr>
<tr>
<td>C. albicans</td>
<td>24.0 ± 0.6a</td>
<td>18.0 ± 0.3a</td>
<td>0 ± 0</td>
</tr>
<tr>
<td>C. krusei</td>
<td>15.0 ± 0.5b</td>
<td>12.0 ± 1.2b</td>
<td>0 ± 0</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>0 ± 0</td>
<td>15.0 ± 1.0b</td>
<td>10.0 ± 0.5c</td>
</tr>
</tbody>
</table>

Value express in mean ± SD in mm; g: crude extract, h: 100% Hex fraction, i: 50% Hex-EtOAc fraction, j: 25% Hex-EtOAc fraction, k: 12.5% Hex-EtOAc fraction, l: 3.125% Hex-EtOAc fraction.

Table 3 MIC values of the crude extract and fractions of C. zambesicus on the tested fungi (mg/ml).

<table>
<thead>
<tr>
<th>Yeast</th>
<th>C. albicans</th>
<th>C. krusei</th>
<th>C. glabrata</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>h</td>
<td>i</td>
<td>j</td>
</tr>
<tr>
<td>C. albicans</td>
<td>0.048</td>
<td>0.390</td>
<td>0.781</td>
</tr>
<tr>
<td>C. krusei</td>
<td>0.195</td>
<td>0.390</td>
<td>0.781</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Table 4 MFC values of the crude extract and fractions of C. zambesicus on the tested fungi (mg/ml).

<table>
<thead>
<tr>
<th>Yeast</th>
<th>C. albicans</th>
<th>C. krusei</th>
<th>C. glabrata</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>h</td>
<td>i</td>
<td>j</td>
</tr>
<tr>
<td>C. albicans</td>
<td>0.195</td>
<td>0.390</td>
<td>0.781</td>
</tr>
<tr>
<td>C. krusei</td>
<td>1.562</td>
<td>0.390</td>
<td>0.781</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Table 5 MFC/MIC ratio of the crude extract and fractions of C. zambesicus on the tested fungi.

<table>
<thead>
<tr>
<th>Yeast</th>
<th>C. albicans</th>
<th>C. krusei</th>
<th>C. glabrata</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>h</td>
<td>i</td>
<td>j</td>
</tr>
<tr>
<td>C. albicans</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>C. krusei</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

DISCUSSION

Phytochemical screening and antifungal activity

The phytochemical screening of the methanolic stem bark extracts of C. zambesicus revealed the presence of metabolites such as Phenols, flavonoids, anthraquinones, tannins, saponines, steroids and alkaloids. In a previous study, Datsu et al. (2009) have analyzed the ethanolic extract of the roots and bark of the same plant. More recently, Okokon and Nwafor (2008) who found a LD50 of 273.86 mg/kg for the root extract of C. zambesicus.

The antifungal activity exerted by the crude stem bark extract of C. zambesicus and fractions highlights its potential as a source of antifungal compounds. Previous findings have highlighted varying effects of extracts from C. zambesicus and elsewhere as antimicrobials (Ajayiyeoba et al. 1998; Abo et al. 1999; Adekunle and Ikunimayi 2006; Ajayi and Akintola 2007; Reuben et al. 2008; Mohamed et al. 2009; Okonok and Nwafor 2010). In this study, fractions C3, C4 and C5 showed to contain alkaloids, steroids, tannins, flavonoids, anthraquinones, essential oils, saponines or phenols at varying extents, but exhibited potencies against yeasts and dermatophytes.

Given that some of the above mentioned metabolites possess antimicrobial activities (Abo et al. 1999; Nwaogu et al. 2007; Datsu et al. 2009), their presence in C. zambesicus extracts may also elicit the observed antifungal activity. This activity may also be the result of synergistic interactions amongst the components. Of note, alkaloids, phenols, tannins and flavonoids have been shown to inhibit cell wall formation in fungi leading to the death of the organism. In addition, tannins can inhibit the growth of microorganisms by coagulating the protoplasm (Onodapo and Owonubi 1993; Barapedjo and Bunchoo 1995; Zacchino et al. 1998; Abo et al. 1999; Adekunle and Ikunimayi 2006; Tapa et al. 2006; Oh et al. 2008; Effiong and Sanni 2009).

Acute toxicity

The LD50 of C. zambesicus crude extract was found to be above the dose of 12 g/kg, indicating it as less toxic orally (LD50 > 5 g/kg; Hodgson 2004), compared to the finding of Okonok and Nwafor (2008) who found a LD50 of 273.86 mg/kg for the root extract of C. zambesicus.

CONCLUSION

The results achieved from the current investigation clearly indicate that the antifungal activity of C. zambesicus vary with the fungi species and support a good correlation with the reported traditional medical uses of this plant as treatment for fungal infections. However, further investigation is required to purify the active principles and determine their role in the antifungal activity.

ACKNOWLEDGEMENTS

The authors acknowledge the contribution of Mr. Victor Nana, National Herbarium- Cameroon in plant selection, identification and collection. We also thank the Centre Pasteur du Cameroun and...
the Laboratory of Toxicology and Pharmacology for providing us with fungal strains and laboratory rats respectively.

REFERENCES

Diterpenoids from the stem bark of Croton zambesicus. Phytotherapy Research, 60, 345-349

Diterpenoids from the stem bark of Croton zambesicus. Phytotherapy Research, 60, 345-349

Mohamed IE, Nur Ebe, Choudhary MI, Khan SN (2009) Bioactive natural products from two Sudanese medicinal plants Diospyros mespiliformis and Croton zambesicus. Records of Natural Products 3, 198-203

Orock D, Focho ZO, Gbile A, Kamanyi KJ, Kamsu A, Keita T, Mbenfolius, 494-497

OH AO, (1976) The antimicrobial properties of Croton zambesicus against pathogenic Trypanosoma bergei in mice. Indian Journal of Pharmacology 37, 243-246

