In Vitro Regeneration, Flowering and Seed Formation from Leaf Explants of Scoparia dulcis L.

Mahender Aileni • Venugopal Rao Kokkirala • Rajesh Yarra • Anil Kumar Vemunoori • Kiranmayee Kasula • Pavan Umate • Sadanandam Abbagan*

Plant Biotechnology Research Unit, Department of Biotechnology, Kakatiya University, Warangal – 506 009, India

Received: 11 January, 2011. Accepted: 3 June, 2011.

Corresponding author: * nandamas@rediffmail.com

ABSTRACT

This study describes an efficient protocol for the induction of in vitro flowering and fruiting of Scoparia dulcis L. (family - Scrophulariaceae), a multipurpose folk medicinal plant. Murashige and Skoog medium supplemented with kinetin (KIN; 13.93 μM) and indole-3-acetic acid (IAA; 1.14 μM) is optimal for the formation of multiple shoots (20.00 ± 1.67), which induced floral buds (13 ± 0.43). The regenerated plantlets developed flowers and fruits within 40-45 and 50-55 days, respectively. In vitro floral development was asynchronous. The morphology of the in vitro developed floral organs was almost similar to that of the parent plant. The flowers produced in vitro developed ripe fruits with viable seeds. Our finding has important implications in understanding the influence of physiological factors and the molecular basis of floral organ formation in this valuable medicinal plant.

Keywords: floral organ development, IAA, in vitro fruiting, kinetin, multiple shoots, ornamental potential

Abbreviations: I2-KI, iodine/potassium iodide; KIN, kinetin; IAA, indole-3-acetic acid; NAA, β-naphthale acetic acid; IBA, indole-3-butyric acid; MS, Murashige and Skoog

INTRODUCTION

The production of herbal medicines is one of the most remarkable contributions of plant biodiversity. Scoparia dulcis L. or sweet broomweed is a perennial medicinal herb distributed in the tropical and subtropical regions of Asia and South America. This plant is used in traditional medicine. The widely accepted medicinal properties have featured this plant as a subject of intense research (Riel et al. 2007; Mahender et al. 2008), various terpenoids like scoparic acid A, scopadulciol and scopadulcin, useful for their therapeutic properties (Hayashi et al. 1990), including antihyperalgesic, analgesic, anti-HIV (Mahendar et al. 2009), neurological disorders, antimalarial (Riel et al. 2002), and antiulcer (Babincová et al. 2008), as well as cytotoxicity activity against cancer cells (Ahsan et al. 2003). In addition, the diversity of colors and shape of flowers bestows this genus an interesting ornamental potential (Escandon et al. 2005). Natural S. dulcis populations are dwindling at an alarming rate due to its overexploitation for medicinal use. The natural means of propagation of this plant suffers from low seed germination ability. The conservation of this plant can be achieved by in vitro clonal propagation which can also fulfill its increasing demand in the pharmaceutical sector.

In vitro flowering has been reported for many plant species such as coriander (Stephen and Jayabalän 1998), tomato cultivar MicroTom (Rao et al. 2005), apple (Flachowsky et al. 2007), Dendrobium (Hee et al. 2007), and Salvia (Makunga and van Staden 2008). However, reports on in vitro fruiting and seed set are limited (Stephen and Jayabalän 1998; Franklin et al. 2000; Koh and Loh 2000; Bodhi Padma and Leung 2003; Rao et al. 2005; Hee et al. 2007). Induction of flowering under controlled in vitro conditions offers a unique possibility to study the hormonal regulation of floral organ development in this medicinally important plant species.

Our previous finding describes an efficient protocol for in vitro propagation of S. dulcis (Mahender et al. 2008). No reports are available on the induction of in vitro flowering and fruiting for this plant species. In this paper, we present a suitable protocol for the rapid induction of in vitro flowering and seed formation in S. dulcis. This protocol (from establishment of leaf cultures to fruit ripening) can be accomplished in a short period of 50-55 days under in vitro conditions. The present study has also led to the development of a regeneration protocol from mature leaf explants of S. dulcis which complements very well our earlier studies on clonal propagation of this valuable medicinal plant (Mahender et al. 2008).

MATERIALS AND METHODS

All chemicals and reagents used in the experiments were of laboratory reagent grade purchased from Himedia, Mumbai, India.

Plant material

The plant material was collected from a medicinal arboretum maintained at the forest department, Warangal, India.

Surface sterilization

Leaves excised from field-grown mature plants were washed thoroughly under running tap water and placed in 5% Tween-20 for 5 min followed by 3-4 washes in sterile distilled water. The explants were surface sterilized with an aqueous solution of 0.1% HgCl2 for 4-5 min and then washed 4-5 times with sterile distilled water.

Regeneration medium and subculturing

Sterilized leaves were cut into explants 1.0 cm2 each and cultured individually on Murashige and Skoog (MS; Murashige and Skoog
1962) regeneration medium supplemented with kinetin (KIN, 4.64, 9.29, 13.93 and 18.58 μM) in combination with either indole-3-acetic acid (IAA, 1.14 and 2.85 μM) or α-naphthalene acetic acid (NAA, 1.07 and 2.68 μM). MS medium without plant growth regulators (PGRs) served as the control. MS media with 2% (w/v) sucrose and 0.8% (w/v) agar were used for regeneration and rooting studies. The pH of all media was adjusted to 5.8 with 0.1N NaOH before autoclaving at 121°C for 15 min. Each culture tube (150 × 25 mm) containing 20 ml of media was inoculated with a single explant and plugged with non-absorbent cotton wrapped in two layers of cheese cloth.

After 35 days of culture on regeneration medium, all regenerating leaf cultures with or without flower buds were transferred onto fresh MS basal medium (without PGRs) for further proliferation and growth. Following a 2-week culture on fresh MS basal medium, the elongated microshoots (4-5 cm) were excised and rooted onto MS medium supplemented with auxin, indole-3-butyric acid (IBA, 4.92 μM), or without IBA, which served as the control.

**Culture conditions and analysis**

All cultures were incubated under a 16-h photoperiod under cool white fluorescent lights (Philips, India) providing a quantum flux density of 65 μE m⁻² s⁻¹ at 25 ± 2°C. In order to estimate pollen viability, the petals were removed, and the anthers were squashed in distilled water and centrifuged at 5000 rpm for 2 min. After centrifugation, pollen grains were pelleted, collected, mixed in iodine stain solution, I₂-KI (2.5 g KI, 250 mg I₂ and 125 ml H₂O) and allowed to incubate for 10-15 min (Pedersen et al. 2004). The stained suspension was placed on a cavity microscopic slide and allowed to incubate for 10-15 min (Pedersen et al. 2004). The pollen fertility was calculated in terms of percent viability using the following formula:

\[
\text{Pollen viability (\%) } = \frac{\text{Number of pollen stained}}{\text{Total number of pollen counted}} \times 100
\]

In order to study the internal morphology of the in vitro developed fruit and the process of seed formation, histological cross sections of in vitro derived fruits were made using a razor blade. Sections were incubated for 5 min in 2% acetic carmine (w/v). The stained images were photographed with a Nikon camera (Nikon Co., Tokyo, Japan) mounted on a Nikon inverted phase contrast microscope. The data pertaining to explants exhibiting multiple shoot formation and the number of floral buds per explant, flowers per plantlet, and fruits per plantlet were analyzed on days 35, 45, and 55, respectively from the beginning of leaf culture.

The data recorded was initially used to calculate standard deviation and by standard error using Microsoft Excel. The data thus obtained was analyzed statistically using analysis of variance (ANOVA). The P values (P < 0.05) obtained from the ‘r’ table were used to categorize significant differences between means. For each concentration, 10 explants were used with 2 replicates each; the experiment was repeated twice.

**RESULTS AND DISCUSSION**

**Multiple shoot formation and floral bud initiation**

The efficiency of multiple shoot formation with or without the initiation of in vitro flowering differed with the concentrations of PGRs used in this study. The culture of leaf explants on MS medium with different combinations of KIN (4.64, 9.29, 13.93 and 18.58 μM) with IAA (1.14 and 2.85 μM) or NAA (1.07 and 2.68 μM) induced direct or indirect (callus-mediated) plant regeneration from these explants, respectively. Leaf explants that responded on different regeneration media developed shoot buds within 20-25 days of culture (Fig. 1A). The explants cultured on KIN (4.64, 9.29, 13.93 and 18.58 μM) with IAA (1.14 and 2.85 μM) induced more multiple shoots ranging from 9.00 ± 1.35 to 20.00 ± 1.67 shoots/explant (Fig. 1B). A combination of KIN (13.93 μM) and IAA (1.14 μM) induced more multiple shoots (20.00 ± 1.67) that also resulted in the development of maximum number of floral buds (13 ± 0.43).

The treatments of KIN (4.64 μM) with IAA (1.14 and 2.85 μM) did not induce floral buds on the regenerated plants (Table 1). In the first set of experiments, MS medium containing KIN (13.93 μM), when combined with IAA (1.14 μM), induced high shoot regeneration along with floral bud initiation followed by the combination of KIN (13.93 μM) with IAA (2.85 μM). Fewest multiple shoots without floral buds formed on MS medium with KIN (4.64 μM) and NAA (2.68 μM) (Table 1).

<table>
<thead>
<tr>
<th>Hormone conc. (μM)</th>
<th>Shoot regeneration response (%)</th>
<th>No. of shoots/ explant (±S.E)</th>
<th>Flowering response</th>
<th>No. of floral buds/ explant (±S.E)</th>
<th>No. of flowers/ plantlet (±S.E)</th>
<th>No. of fruits/ plantlet (±S.E)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Kn + IAA</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.64 + 1.14</td>
<td>70</td>
<td>10.00 ± 1.44 g a</td>
<td>NF</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9.29 + 1.14</td>
<td>85</td>
<td>14.00 ± 1.70 b h</td>
<td>F</td>
<td>8 ± 0.35 e a</td>
<td>7 ± 0.41 fa</td>
<td>4 ± 0.45 fa</td>
</tr>
<tr>
<td>13.93 + 1.14</td>
<td>90</td>
<td>20.00 ± 1.67 i c</td>
<td>F</td>
<td>13 ± 0.43 g b</td>
<td>12 ± 0.56 g b</td>
<td>10 ± 0.44 g b</td>
</tr>
<tr>
<td>18.58 + 1.14</td>
<td>80</td>
<td>15.00 ± 1.86 i b</td>
<td>F</td>
<td>9 ± 0.68 f c</td>
<td>6 ± 0.66 c e</td>
<td>4 ± 0.32 F a</td>
</tr>
<tr>
<td>4.46 + 2.85</td>
<td>65</td>
<td>9.00 ± 1.35 e a</td>
<td>NF</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9.29 + 2.28</td>
<td>70</td>
<td>13.00 ± 1.91 h d</td>
<td>F</td>
<td>6 ± 0.62 d d</td>
<td>4 ± 0.30 a d</td>
<td>2 ± 0.22 a c</td>
</tr>
<tr>
<td>13.93 + 2.28</td>
<td>85</td>
<td>17.00 ± 1.58 i e</td>
<td>F</td>
<td>10 ± 0.52 f c</td>
<td>7 ± 0.29 a f</td>
<td>4 ± 0.24 e a</td>
</tr>
<tr>
<td>18.58 + 2.28</td>
<td>70</td>
<td>12.00 ± 1.62 h d</td>
<td>F</td>
<td>8 ± 0.58 e a</td>
<td>6 ± 0.45 c e</td>
<td>4 ± 0.32 e a</td>
</tr>
<tr>
<td><strong>Kn + NAA</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.46 + 1.07</td>
<td>55</td>
<td>6.00 ± 0.96 d f</td>
<td>NF</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9.29 + 1.07</td>
<td>65</td>
<td>8.00 ± 1.19 e g</td>
<td>F</td>
<td>5 ± 0.30 c d</td>
<td>5 ± 0.26 c e</td>
<td>3 ± 0.26 d d</td>
</tr>
<tr>
<td>13.93 + 1.07</td>
<td>75</td>
<td>10.00 ± 1.35 g a</td>
<td>F</td>
<td>6 ± 0.50 d d</td>
<td>6 ± 0.36 d c</td>
<td>4 ± 0.36 F a</td>
</tr>
<tr>
<td>18.58 + 1.07</td>
<td>80</td>
<td>9.00 ± 1.08 f a</td>
<td>NF</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4.46 + 2.68</td>
<td>55</td>
<td>5.00 ± 1.80 a f</td>
<td>NF</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9.29 + 2.68</td>
<td>60</td>
<td>6.00 ± 1.14 b h</td>
<td>F</td>
<td>4 ± 0.53 b e</td>
<td>5 ± 0.26 c e</td>
<td>2 ± 0.26 b c</td>
</tr>
<tr>
<td>13.93 + 2.68</td>
<td>60</td>
<td>6.00 ± 1.20 c f</td>
<td>F</td>
<td>2 ± 0.27 a f</td>
<td>4 ± 0.36 b d</td>
<td>2 ± 0.36 c c</td>
</tr>
<tr>
<td>18.58 + 2.68</td>
<td>55</td>
<td>6.00 ± 1.20 c f</td>
<td>NF</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

According to DMRT, means followed by the same letter in each column are not significantly different at P < 0.05.

(NF - no flowering; F - flowering).
basal medium. Nevertheless, no new floral buds developed on MS basal medium. The flowers self-fertilized in vitro and mature fruits developed 50-55 d after the onset of primary culture (Fig. 1E, F). The in vitro developed pollen grains were viable when stained with I1-KI solution; viable pollen grains stained dark red and showed approximately 80-85% viability (Fig. 1G). Histological cross sections of the ripened fruits (stained with 2% acetocarmine solution) showed normal seed development pattern (Fig. 1H). The seeds developed in vitro resumed normal growth and development under ex vitro conditions.

For root initiation, the elongated microshoots (4-5 cm, 42-47 days-old) were transferred to MS medium containing 4.92 μM IBA. Well developed roots (7-8 roots/microshoot) were observed to emerge from the cut ends of the microshoot within 10-12 days of culture (Fig. 1D2).

This study aimed to develop an efficient protocol for direct leaf-based regeneration as well as for in vitro flowering and fruiting in S. dulcis. In all our experiments, the cytokinin KIN was used in combination with either IAA or NAA. Our previous in vitro studies have shown that the combination of BAP (22.2 μM) and IAA (0.5 μM) resulted in efficient induction of multiple shoots from mature leaf explants of S. dulcis although this PGR combination did not support in vitro flowering in S. dulcis (Mahender et al. 2008). The involvement of KIN appears to be essential for the induction of in vitro flowering in S. dulcis. Considering our previous report (Mahender et al. 2008) and the present finding, we conclude that the presence of a cytokinin, BAP or KIN, is decisive in inducing either plant regeneration, or in vitro flowering and fruiting in S. dulcis, respectively. The role of KIN in in vitro floral induction was previously reported for Arachis hypogaea (Narasimbalu and Reddy 1984) and Withania somnifera (Saritha and Naidu 2007), and the present findings are consistent with those reports. The addition of NAA and KIN showed a sub-optimal response in terms of in vitro plant regeneration and floral bud formation implying the crucial role of KIN and IAA in direct shoot regeneration and efficient in vitro flowering and fruiting in S. dulcis. The responses resulting in direct plant regeneration as well as the development of floral buds observed on medium supplemented with KIN and IAA or NAA were reported earlier (Thakur et al. 1998; Kintzios and Michaelakis 1999).

The protocol presented here demonstrates that an efficient plant regeneration can be obtained from leaf explants; thus, the protocol has important implications for the genetic transformation of this medicinal plant. Moreover, the entire life cycle of S. dulcis can be completed under controlled in vitro conditions within a short duration of 50-55 days unlike ex vitro conditions, which might need 5-6 months. The response to flowering is a complex process and its induction under in vitro conditions is rare. Under in vitro conditions, the supply and balance of the type of cytokinin and/or auxin can favor floral development and maturation (Rao et al. 2005). The combination of cytokinin and auxin supported in vitro flowering in roses (Wang et al. 2002), tobacco (Peeters et al. 1991), and tomato model cultivar MicroTom (Rao et al. 2005). In conclusion, the protocol presented here is simple, efficient, and reproducible. Using this protocol, in vitro regeneration, flowering and fruiting can be achieved for the medicinal plant S. dulcis. This protocol facilitates the preparation of whole plant-based extracts for medicinal purposes, and also for the characterization of useful secondary metabolites. This protocol can be applied for understanding the physiological and chemical factors involved in the transition of vegetative to floral meristem in a medicinally important genus.

REFERENCES


extract of Scoparia dulcis. Fitoterapia 79 (7), 587-588

Bodhi Padma K, Leung DWM (2003) In vitro fruiting and seed set of Capsi-
cum annuum L. cv. sweet banana. In Vitro Cellular and Developmental Bi-
ology – Plant 39 (5), 536-539

ology 8 (2), 205-211


ology 8 (2), 205-211


Franklin G, Pius PK, Ignacimuthu S (2000) Factors affecting in vitro flower-
ing and fruiting of green pea (Pisum sativum L.). Euphytica 15 (1), 65-74


Hee KH, Loh CS, Yeoh HH (1999) Induction of somatic embryogenesis and

ing in culture in Pisum sativum. Journal of Medicinal Food 9 (3), 391-394


ephnomedicinal plant. Journal of Herbs, Spices and Medicinal Plants 14, 200-207


inhibitory activity of leaf extract of Scoparia dulcis L. Journal of Herbs, Spices and Medicinal Plants 15 (3), 241-247

Makungu NP, Van Staden J (2008) An efficient system for the production of clonal plantlets of the medicinally important aromatic plant: Salvia africana-

lutea L. Plant Cell, Tissue and Organ Culture 92 (1), 63-72

Munshige T, Skoog F (1962) A revised medium for rapid growth and biomass

with tobacco tissue cultures. Physiologia Plantarum 15, 473-497

plied Genetics 69 (1), 87-91


staining techniques for identifying the waxy phenotype in sorghum grain and

waxy genotype in sorghum pollen. Crop Science 44, 764-767


flower bud formation in tobacco: Interaction of hormones. Plant Physiology 97, 402-408

Rao KV, Kiranmamaye K, Pavan U, JayaSree T, Rao AV, Sadanandam A

(2005) Induction of multiple shoots from leaf segments, in vitro-flowering and fruiting of a dwarf tomato (Lycopersicon esculentum). Journal of Plant Physiolo-

ogy 162 (8), 959-962

Riel MA, Kyle DE, Milhous WK (2002) Efficacy of scopadulcic acid A

against Plasmodium falciparum in vitro. Journal of Natural Products 65 (4), 614-615


an important antitumor medicinal plant. Plant Science 172, 847-851


Thakur R, Rao PS, Bapat VA (1998) In vitro plant regeneration in Melia azed-
darach L. Plant Cell Reports 18, 127-131