In Vitro Antagonism of Trichoderma viride against Five Phytopathogens

Ashwani Tapwal1* · Upender Singh2 · Jaime A. Teixeira da Silva3 · Gurpreet Singh1 · Shipra Garg2 · Rajesh Kumar1

1 Rain Forest Research Institute, P.B. 136, Deovan, Jorhat, Assam, 785001 India
2 Shoolini Institute of Life Sciences and Business Management, Anand Campus, The Mall Solan, HP, India
3 Faculty of Agriculture and Graduate School of Agriculture, Kagawa University, Miki-cho, Ikenebe 2393, Kagawa-ken, 761-0795, Japan

ABSTRACT

Fungal diseases are of concern in forest regeneration as they occasionally pose a serious threat causing considerable mortality in nurseries. Seedlings are generally susceptible to diseases due to the tenderness of their tissues and are often difficult to establish. The use of biocontrol agents is an important alternative to conventional chemicals in the protection of crops against weeds, insects, and diseases in both agriculture and forestry. The success of biocontrol and increase in the yield depends on the nature of antagonistic properties and the mechanisms of action acquired by the organisms used. Both fungi and bacteria are able to synthesise a wide range of metabolites with fungicidal and bactericidal ability. In this study, Trichoderma viride, evaluated under laboratory conditions against some common phytopathogens belonging to different groups of fungi, effectively inhibited the growth of the tested pathogens in dual cultures by hyperparasitism and by secretion of volatile and non-volatile metabolites. In the dual culture experiment, maximum inhibition was recorded for Fusarium oxysporum followed by Rhizoctonia solani and least for Alternaria zinniae. The volatile metabolites of T. viride were most effective against F. oxysporum and least effective against R. solani; an almost reverse situation was observed when non-volatile metabolites were examined.

Keywords: biocontrol, non-volatile metabolites, volatile metabolites

Abbreviations: PDA, potato dextrose agar; PDB, potato dextrose broth

INTRODUCTION

Plants are a major source of food, fibre, fodder, medicines and many other useful products for mankind. Various insects, bacteria, viruses, fungi and other pests attack plants at various stages of their development. This reduces their productivity and leads to huge losses. The most common and popular method of disease control is the use of synthetic pesticides. However, due to the polluting and non-biodegradable nature of such pesticides and the development of resistance by pathogens, biological control offers an important alternative to synthetic chemicals for disease management. The goal of biocontrol research is to provide additional tools for disease management. Biocontrol can be used in situations where no chemical control is available, where conventional pesticides cannot be used due to entry or residue concerns, or where the product must be certified as organic. Biocontrol involves harnessing disease-suppressive microorganisms to improve plant health. Disease suppression by biocontrol agents is the sustained manifestation of interactions among the plant, pathogen, biocontrol agent, microbial community on and around the plant, and the physical environment (Handelsman and Stabb 1996). In recent years, there has been a worldwide swing towards the use of eco-friendly methods for protecting crops from pests and diseases (Rao et al. 1998). Biological control of plant disease by microorganisms, especially of soil-borne plant pathogens and nematodes, has been considered as a more natural and environmentally acceptable alternative to existing chemical treatment methods (Barker and Panlitz 1996; Eziashi et al. 2007).

There are a variety of fungal species and isolates that have been reported as biocontrol agents, although Trichoderma species clearly dominate, perhaps due to their ease of growth and wide host range (Whipps and Lumsden 2001). Several strains of Trichoderma have been reported to be effective biocontrol agents for various soil-borne plant pathogenic fungi under greenhouse and field conditions (Akrami et al. 2009; Morsy et al. 2009; Ajith and Lakshmidevi 2010). The genus Trichoderma is a common filamentous imperfect fungi (Deuteromycetes, Dematiaceae), the most common saprophyte in the rhizosphere and is found in almost all soils. It is a very effective biological means of plant disease management, especially for soil-borne diseases. It is highly interactive in root, soil and foliar environments. Several Trichoderma species were reported to restrict plant pathogenic fungi under laboratory and natural conditions. They secrete a variety of volatile and non-volatile compounds with antibiotic properties (Papavizas 1985; Tapwal et al. 2004, 2005; Dubey et al. 2007; Ajith and Lakshmidevi 2010). Trichoderma and Gliocladium are closely related fungal biocontrol agents. Antimicrobial compounds suppress disease by diverse mechanisms, including the production of structurally complex antibiotics gliovirin and gliotoxin (Howell et al. 1993). Production of antibiotics by fungi exhibiting biocontrol activity is common for Trichoderma and Gliocladium isolates (Howell 1998).

Although the number of biocontrol products is increasing, they still represent only about 1% of agricultural chemical sales (Faravel 2005). In comparison, fungicides represent approximately 15% of pesticide sales (Faravel 2005). Before assessing the practical implementation of a biocontrol agent through its antagonistic activity, it is essential to determine the effects of changing environmental conditions on biological control. It is important to learn the ecology of these organisms and their interactions with the pathogen, host plant, soil and rhizosphere microbial communities, and
their surrounding environments as much as possible (Handelsman and Stabb 1996). With this in view the present investigation was carried out to examine the efficacy of volatile and non-volatile metabolites produced by *Trichoderma viride* against five fungal plant pathogens of economic importance under *in vitro* conditions.

MATERIALS AND METHODS

Isolates

Cultures of selected phytopathogens and *T. viride* were obtained from the Department of Botany, Shoolini Institute of Life Sciences and Management, Solan, Himachal Pradesh. Potato dextrose agar (PDA; Merck, Mumbai, India) was the choice of medium for sub-culturing and experiments.

Dual culture technique

T. viride was evaluated against five selected phytopathogens by the dual culture technique (Morton and Strouble 1955). Mycelial discs 5 mm in diameter were excised from the edge of an actively growing antagonist and the pathogen was cultured on opposite ends of a Petri dish equidistant from the periphery. A completely randomized experimental design was used with three replicates for each isolate. In control Petri dish, in place of antagonist, a sterile agar disc was inoculated on the side opposite pathogen. Inoculated plates were incubated at 25 ± 1°C for 5 days. After the incubation period, radial growth of pathogens was measured and the percent inhibition of average radial growth was calculated relative to the control as follows:

\[L = \frac{(C - TV)}{C} \times 100 \]

where L is the percentage inhibition of radial mycelial growth, C is radial growth of the pathogen in the control; T is radial growth of the pathogen in the presence of *T. viride* (Edington et al. 1971).

Evaluation of volatile metabolites

The effect of the volatile metabolites released by *T. viride* on the mycelial growth of the pathogens was evaluated by the ‘inverted plate technique’ as described by Dennis and Webster (1971). The 5-mm mycelial discs of *T. viride* obtained from the margin of young cultures were placed centrally on the PDA glass dish (Riviera, 100 × 20 mm) and incubated in 25 ± 1°C for 0, 24, 48 and 72 h. In the control plates, sterile PDA media discs 5 mm in diameter were placed on the plates as mentioned above. At the end of the incubation period, the top of each Petri dish was replaced with the bottom of the Petri dish inoculated with pathogen and sealed together with adhesive tape. Sealing Petri dishes avoided the escape of volatile compounds of the antagonist and ensured their inhibitory effect on the pathogen. A completely randomized experimental design was used with three replicates. Radial growth of the pathogens was recorded on the 5th day of incubation and L was calculated, as described above.

Evaluation of non-volatile metabolites

The food poisoning technique was used to evaluate the effect of non-volatile metabolites produced by *T. viride* on the growth of pathogens. 5 mm discs of young mycelial agar plugs were taken from the edge of young cultures and were inoculated in 100-ml sterilized potato dextrose broth (PDB) in 250-ml conical flasks and incubated at 25 ± 1°C. After incubating for 7 days, the culture filtrates were collected and centrifuged at 3000 rpm for 20 min; the supernatants were filtered through 45-μm Millipore filters using a vacuum pump assembly under aseptic conditions. Just before pouring, a predefined amount of culture filtrate was mixed with molten PDA to obtain a final concentration of 5, 10, 15 and 20%. 5-mm discs of the pathogens were inoculated to the Petri dishes amended with culture filtrate and incubated at 25 ± 1°C. The colony diameter of the pathogens was measured after 5 days and compared with the growth of the pathogen in the control. In control, the PDA was amended with the same amount of sterilized distilled water as mentioned above. The experiment was carried out in triplicate.

Statistical analysis and statistical analysis

Statistical analysis was performed following a completely randomized design (CRBD) with three replicates in each treatment. The data was subjected to analysis of variance (ANOVA) using statistical software MINITAB 11.2 (http://www.minitab.com) and significance of various treatments were evaluated by F-tests (*P* < 0.05).

RESULTS AND DISCUSSION

Growth inhibition of phytopathogens by *T. viride* in dual culture

In the dual culture experiment, *T. viride* had a marked significant inhibitory effect on the growth of selected phytopathogens compared to their respective controls (*Table 1*). Growth inhibition decreased as follows: *F. oxysporum* (67.96%) > *R. solani* (48.67%) > *Curvularia lunata* (44.32%) > *A. solani* (37.46%) > *A. zinniae* (32.44%). Since *Trichoderma* is a fast-growing fungus, it reached the pathogen within 3-4 days and overgrew them in 8-10 days. The presence of an inhibition zone in dual culture without hyphal contact in treatments advocates the secretion of some diffusible non-volatile antibiotics by *T. viride*. Similar findings on the interaction of *Trichoderma* species (*Trichoderma harzianum* T614, *Trichoderma harzianum* T447, *T. harzianum* T969, *Trichoderma virens* T523 and *Trichoderma* sp. T) were recorded by Hajieghrari et al. (2008) for *F. graminearum*, *R. solani* and *Macrophomina phaseoli*; *T. viride* for *Fusarium oxysporum* f.sp. *radic-cis-lycopersici* (Kerkeni et al. 2007) and *T. harzianum* for *Phytophthora capsici* (Shashidharan et al. 2008). The antagonist restricted the growth of all pathogens and in most cases, *T. viride* grew over the zone of inhibition, overgrowing the pathogen and sporulating there after 10 days. The inhibition in radial growth of two interacting organisms in dual culture has been attributed to secretion of extracellular hydrolytic enzymes (Schimbock et al. 1994), by the production of antibiotics (Howell 1998) as well as some cell walls degrading enzymes such as chitinases, glucanases that break down polysaccharides, chitins and β-glucanase, thereby destroying cell wall integrity (Elad 2000). These may play a key role in mycoparasitism because of changes in cell wall integrity prior to actual physical contact.

Table 1 Growth inhibition of five phytopathogens by *Trichoderma viride* in dual culture.

<table>
<thead>
<tr>
<th>Pathogens</th>
<th>Percent growth inhibition</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternaria solani</td>
<td>34.76</td>
<td>2.23</td>
</tr>
<tr>
<td>Alternaria zinniae</td>
<td>32.44</td>
<td>2.01</td>
</tr>
<tr>
<td>Curvularia lunata</td>
<td>44.32</td>
<td>2.67</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>67.96</td>
<td>2.06</td>
</tr>
<tr>
<td>Rhizoctonia solani</td>
<td>48.67</td>
<td>1.94</td>
</tr>
</tbody>
</table>

Effect of volatile metabolites from *T. viride* on the radial growth of phytopathogens

To study the effect of volatile compounds released by *T. viride* on the growth of pathogens, four experiments were conducted. In the first, the antagonists and the pathogen of the same age (0 day old antagonist) were used. The antagonist culture was one day (24 h) older than that of the pathogen in the second experiment. In the third experiment, the antagonist was two days (48 h) older than the pathogen and in the fourth experiment the antagonist was three days (72 h) older than the pathogen. The growth of the pathogen was measured on the 5th day of incubation and compared with the control. The gaseous metabolites released by *T. viride* diffused and inhibited the growth of the pathogen inocu-

©2011 Global Science Books
lated in the inverted face of the Petri dish. The growth of all pathogens was significantly inhibited and it increased with the age of the antagonist (Table 2). On the 5th day of incubation, a 3-days-old culture of \textit{T. viride} inhibited the growth of pathogens as follows: \textit{F. oxysporum} (53.99\%) > \textit{A. zinniae} (38.00\%) > \textit{A. solani} (24.62\%) > \textit{C. lunata} (21.50\%) > \textit{R. solani} (19.56\%). The volatile compounds of \textit{T. viride} have a marked inhibitory effect on the growth of pathogens in comparison to their respective controls. Growth was significantly inhibited in \textit{A. solani}, \textit{A. zinniae} and \textit{C. lunata} but not significantly so for \textit{R. solani} and \textit{F. oxysporum}. A comparison of growth inhibition among pairs of pathogens revealed that for \textit{A. solani} and \textit{F. oxysporum}, \textit{A. solani} and \textit{R. solani}, \textit{C. lunata} and \textit{F. oxysporum}, and \textit{C. lunata} and \textit{R. solani}, there were significant differences ($F = 8.85$, $SEM = 1.02$, $CD = 3.07$, $P = 0.05$). The volatile compounds of \textit{T. viride} of all ages significantly inhibited the growth of all tested pathogens. However, within-growth inhibition was only significant between the age of 0-3 and 1-3 days old cultures of \textit{T. viride}. But it was non-significant for lower age differences of 0-1, 1-2 and 2-3 days ($F = 3.84$, $SEM = 1.02$, $CD = 3.07$, $P = 0.05$).

Padmodya and Reddy (1996) reported the antagonistic efficacy of volatile compounds of \textit{Trichoderma} spp. against \textit{Fusarium oxysporum}. \textit{Trichoderma} species are known to produce a number of antibiotics such as Trichodermin, Trichovirdin and sesquiterpene, heptallic acid (Nakkeeran et al. 2002), nutrient impoverishment and pH alteration in the medium (Maheshwari et al. 2001), which inhibited the growth of pathogens. Several groups have reported the production of antibiotics from the culture filtrate of \textit{T. viride} (Ooka et al. 1966; Eziahi et al. 2006; Hajieghrari et al. 2008; Siddique et al. 2009; Rajendiran et al. 2010). Hence, \textit{T. viride} has a potential to develop as a biological agent to control the common phytopathogens.

Biological control of plant diseases is an eco-friendly approach that utilizes antagonistic microorganisms as a potential, non-chemical means of disease management. One of the goals for the use of biocontrol in agriculture is to avoid the pitfalls associated with overuse of synthetic pesticides, including the development of resistance amongst pest populations. An attractive feature of biocontrol strategies is that the populations of pathogens developing resistance to antagonistic products produced by biocontrol agents is likely to be very slow (Jenkins and Grzywacz 2000). This may happen because most biocontrol agents produce more than one antimicrobial component and resistance to multiple antimicrobial factors should occur only at a very low frequency. Weller (1988) proposed the manipulation of the rhizosphere to benefit micro-organisms, which produce antagonistic compounds that will protect roots from the deleterious effect of soil-borne pathogens. Support for this concept came from the discovery of suppressive soils in which the active microbiota naturally controls the disease-causing activities of pathogen populations (Weller et al. 2002).

In this study, \textit{T. viride} restricted the growth of selected pathogens in all treatments, but there was no definite trend. In our case, maximum growth inhibition by \textit{T. viride} volatile compounds was observed for \textit{F. oxysporum} followed by \textit{A. zinniae} and least for \textit{R. solani}. In the case of non-volatile compounds, the trend was almost reversed i.e. minimum inhibition was observed for \textit{F. oxysporum} followed by \textit{A. zinniae} and maximum for \textit{R. solani}. It may not be necessary that the pathogen, which was more susceptible to volatile metabolites of the antagonist, may also be sensitive to non-volatile compounds of the same antagonist. In conclusion, \textit{T. viride} was quite effective \textit{in vitro} in restricting selected pathogens. Further research on field applications and isolation and identification of these antibiotic compounds is required.

REFERENCES

Barker R, Paulitz TC (1996) Theoretical Basis for Microbial Interactions

Table 2 \textit{In vitro} growth inhibition of five phytopathogens by volatile compounds of \textit{T. viride}.

<table>
<thead>
<tr>
<th>Age of \textit{T. viride}</th>
<th>\textit{Alternaria solani}</th>
<th>\textit{Alternaria zinniae}</th>
<th>\textit{Curvularia lunata}</th>
<th>\textit{Fusarium oxysporum}</th>
<th>\textit{Rhizoctonia solani}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 days old</td>
<td>7.69</td>
<td>18.00</td>
<td>3.50</td>
<td>27.61</td>
<td>1.78</td>
</tr>
<tr>
<td>1 day old</td>
<td>11.28</td>
<td>22.00</td>
<td>12.50</td>
<td>37.73</td>
<td>4.44</td>
</tr>
<tr>
<td>2 days old</td>
<td>15.38</td>
<td>26.80</td>
<td>17.50</td>
<td>44.79</td>
<td>8.89</td>
</tr>
<tr>
<td>3 days old</td>
<td>24.62</td>
<td>38.00</td>
<td>21.50</td>
<td>53.99</td>
<td>19.56</td>
</tr>
</tbody>
</table>

$F = 8.85$ (rows); $F = 3.84$ (columns); $SEM = 1.02$; $CD = 3.07$; $P = 0.05$

Table 3 \textit{In vitro} growth inhibition of five phytopathogens by non-volatile compounds of \textit{T. viride}.

<table>
<thead>
<tr>
<th>Conc. of culture filtrate (%)</th>
<th>\textit{Alternaria solani}</th>
<th>\textit{Alternaria zinniae}</th>
<th>\textit{Curvularia lunata}</th>
<th>\textit{Fusarium oxysporum}</th>
<th>\textit{Rhizoctonia solani}</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7.66</td>
<td>18.42</td>
<td>7.32</td>
<td>9.09</td>
<td>25.56</td>
</tr>
<tr>
<td>10</td>
<td>19.15</td>
<td>19.74</td>
<td>21.95</td>
<td>10.61</td>
<td>37.78</td>
</tr>
<tr>
<td>15</td>
<td>31.91</td>
<td>23.68</td>
<td>26.83</td>
<td>17.27</td>
<td>48.33</td>
</tr>
<tr>
<td>20</td>
<td>41.70</td>
<td>27.63</td>
<td>36.59</td>
<td>21.21</td>
<td>55.00</td>
</tr>
</tbody>
</table>

$F = 55.38$ (rows); $F = 316.37$ (columns); $SEM = 0.46$; $CD = 1.39$; $P = 0.05$

Edington LV, Khew KL, Barron GI (1971) Fungitoxic spectrum of benzenimidazole compounds. Phytopathology 61, 42-44

Elad Y (2000) Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Protection 19, 709-714

Morsy EM, Abdel-Kawi KA, Khalil MNA (2009) Efficiency of Trichoderma viride and Bacillus subtilis as biocontrol agents against Fusarium solani on tomato plants. Egyptian Journal of Phytopathology 37, 47-57

Morton DT, Strohbe NH (1955) Antagonistic and stimulatory effects of microorganisms upon Sclerotinia phytopathogenic fungi. Phytopathology 45, 419-420

Fems Technology 5 (1), 59-62 ©2011 Global Science Books