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ABSTRACT 
Crop researchers are under increasing pressure to breed designer crops that are able to survive a plethora of biotic and abiotic threats 
while enhancing their nutritional or other inherent value. Conventional crop breeding is no longer able to meet the challenges of the 21st 
century. Genetic transformation is a realistic and viable means of modifying traits of economic significance in crops that ultimately 
provide a solution to solve the global problems of hunger and malnutrition. Genetically modified crops can now overcome biotic (patho-
gens and insect pests) and abiotic stresses (herbicides, drought, salinity, salt, etc.) while maintaining the same productivity. This review 
focuses on the significant achievements of genetic transformation in crops built to be tolerant to different biotic and abiotic stresses. 
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INTRODUCTION 
 
Population growth and climate change present the biggest 
challenges to crop researchers in the 21st century to breed 
designer crops in an environment overcast by different bio-
tic and abiotic threats in addition to nutritional enrichment 
(Park et al. 2010). Conventional crop technologies that 
were able to feed the growing world in the 20th century 
were highly input dependent with a primary emphasis on 
fertilizers, high-yielding varieties, management of water 
resources, etc., as witnessed in the era of the green revolu-
tion (Swaminathan 2006). Moreover, the availability of 
arable land is declining due to malfunctioning agro-
practices (non-sustainable farming), natural stresses viz. 
droughts, storms, floods, heat waves and rises in sea-level 
that are predicted to occur more frequently amid soil health 
problems (soil salinity and other toxicities), which are likely 
to be much more problematic in some areas (Ashraf and 
Akram 2009). So, there is a need to find alternatives for 
environmentally safe and economically viable solutions to 
enhance crop production. In this context, genetic transfor-
mation has emerged as an important means for crop resear-
chers to modify traits of economic significance in crops that 

ultimately provide solutions to solve the global problem of 
hunger and malnutrition. Redesigning crops to ameliorate 
biotic (pathogen and insect pests) and abiotic stresses (her-
bicide, drought, salinity, salt, etc.) by using genetic trans-
formation is a better way for tailoring the genetic architec-
ture of plants for dramatically enhancing agricultural pro-
duction under adverse conditions (Lemaux 2008). The 
advent of molecular genetic technologies have recently ad-
vanced our understanding of crop stress resistance mecha-
nisms that allow us to address these emerging issues much 
more effectively and efficiently than in the past. Moreover, 
the powerful combination of biotechnological tools (genetic 
engineering and transgenesis) and conventional breeding 
permits exploration and utilization of valuable traits en-
coded by transgene(s) to be introduced into commercial 
crops within an economically viable time frame. During the 
last two and a half decades, improved resistance against 
insect pests, pathogens, drought and salinity has been ob-
served in transgenic plants that express/overexpress genes 
regulating osmolytes, specific proteins, antioxidants, ion 
homeostasis, transcription factors and membrane composi-
tion. Transformed plant ‘factories’ are also being designed 
for high volume production of pharmaceuticals, nutraceu-
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ticals and other beneficial chemicals. Transgenic plants 
have become devices for drug-delivery, being synthesized 
in plants (fruits and vegetable crops) that have been engi-
neered to produce edible vaccines. Moreover, with the es-
tablishment and expansion of the “omics” (genomics, prote-
ionomics and metabolomics) era, a much broader range of 
genes with potential for crop improvement are being iden-
tified and, in some cases, tailored for further enhancement 
of their properties within specific crops. This review foc-
uses on the significant achievements of genetic transforma-
tion in crops to ameliorate them for tolerance to different 
biotic and abiotic stresses. 

Conventional breeding methods alone cannot feed the 
extra hungry mouths as the global population is expected to 
reach 8.1 billion by the 2025 (PRB 2009). Despite the suc-
cesses of the green revolution with substantial strides in 
food grains production, India is still classified by FAO as a 
low income, food deficit country, nearly 26% of India’s 
population is considered food insecure, consuming less than 
80% of minimum energy requirements and account for 
about a third of the world’s population that suffers from 
chronic hunger (Kumar and Bhatt 2006). The biggest limit-
ation of traditional breeding is its notoriously slow nature of 
transferring a desired trait which is often associated with 
linkage drag (undesirable traits) into an otherwise superior 
crop cultivar. The time needed to transfer a desired gene 
into a crop plant depends on the source of the gene and the 
evolutionary distance of that source to the recipient crop 
plant (Jauhar 2006). If the gene source is a landrace or a 
related species, forming a primary gene pool with the crop 
species in question, the gene transfer may take five to eight 
years if not longer. Less related wild species belonging to 
the secondary or even tertiary gene pool may be rich reser-
voirs of genes for agronomic traits like disease or pest resis-
tance, but to transfer such genes into crop cultivars may 
take 10 to 15 years or even longer, if they are at all possible. 
Pre- and post-fertilization barriers may impede sexual hyb-
ridization between the donor and the crop species and com-
pound the problem of alien gene transfers (Jauhar 2006). In 
some cases, it may not even be possible to incorporate a 
certain trait by conventional means because a suitable donor 
may not be available or, if available, it may not be possible 
to hybridize the donor species with the cultivated crop plant. 
Moreover, the great challenge of food security being faced 
these days world over, has directed plant scientists towards 
gene revolution after green revolution due to advances in 
field of plant biotechnology. The gene revolution, in fact, 
involves a direct modification of qualitative and quantita-
tive traits in an organism by transferring desired genes from 
one species to another by using tools of biotechnology (tis-
sue culture and genetic engineering). This strategy is ref-
erred to as the ‘transgenic approach’ or ‘genetic transforma-
tion’. In contrast to classical breeding, the genetic engineer-
ing offers an excellent tool for asexually inserting a well-
characterized gene(s) of unrelated organisms into plant cells, 
which on regeneration produce full plants with the inserted 

gene(s) integrated into their genome (Sanghera et al. 2009). 
This process may take less than a year to about 18 months 
in some cases, thus accelerating the process of genetic im-
provement of crop plants. In addition, this exciting technol-
ogy allows access to an unlimited gene pool without the 
constraint of sexual compatibility. Over the past few dec-
ades, breeding possibilities have been broadened by genetic 
engineering and gene transfer technologies, as well as by 
gene mapping and identification of the genome sequences 
of model plants and crops which resulted in efficient trans-
formation and generation of transgenic lines in a number of 
crop species (Gosal et al. 2009). Further, pyramiding of 
desirable genes with similar effects can also be achieved by 
using these approaches. Genetic transformation by Agrobac-
terium-mediated and microprojectile bombardment has 
been the most successful approach (Sanghera et al. 2009) 
used in plant transformation and successfully demonstrated 
for different economically important traits including biotic 
resistance (insect and disease) and abiotic stress tolerance 

(herbicide, drought and salt) enhancement in different crop 
plants. In this review, an attempt has been made to cover the 
most important crop improvements through transgenic tech-
nologies. 
 
TRANSGENIC STRATEGIES TO COMBAT BIOTIC 
STRESSES 
 
Tremendous loss in yield of several economically important 
crops occurs due to biotic stresses (insect infestation and 
diseases). Recently, significant research and development 
efforts have been made to produce plants with high degree 
of tolerance or resistance to insect pest and diseases fol-
lowing transgenic technology which are described in sub-
sequent section. The knowledge of the molecular basis of 
disease caused by plant pathogens and herbivory interac-
tions shown by insects has allowed testing different strate-
gies to produce resistant transgenic plants. 

It is well known that plant pathogens represent real 
threat to world agriculture (Gurr and Rushton 2005). Even 
now, after adoption of various agricultural practices and 
agrochemicals, every year plant diseases account approxi-
mately 12% yield loss at the field level, to which is added 
9-20% during post-harvest stages (Agrios 2005). For some 
diseases, chemical control is very effective, but it is often 
non-specific in its effects, killing beneficial organisms as 
well as pathogens, and it may have undesirable health, 
safety, and environmental risks (Manczinger et al. 2002; 
Haggag 2008; Park et al. 2010). Our knowledge of mole-
cular events occurring during plant–pathogen interactions 
has expanded significantly in the last few decades. Based 
on this knowledge, several strategies have emerged for 
developing crop varieties resistant to pathogens. Strategies 
include the manipulation of resistance by expression of PR 
proteins, antifungal peptides and manipulation of biosynthe-
sis of phytoalexins (Quaim 2005; Punja 2007). The ex-
ploitation of genetic transformation technology to engineer 
plants in crops and aganst different pathogens has been 
elaborated in this section. 

 
Transgenics for insect resistance 
 
The one of the most practical way of increasing crop yield 
would be to preserve more of what is grown from loss to 
insect pests, which are estimated to consume around 14% of 
total global agricultural output (Oerke et al. 1994). Insects 
are not only responsible for massive direct losses of produc-
tivity as a result of their herbivoury, but also cause massive 
indirect losses due to their role as vectors for various plant 
pathogens. These losses occur despite the extensive use of 
pesticides and fungicides. Moreover, more than 600 pests 
have been reported to develop resistant against chemical 
pesticides (Raman 1995). So, durability in the inherent 
resistance capacity of particular crop against insect pest is 
essential. This can be achieved by exploiting tools like 
genetic transformation to tailor insect resistance transgenic 
crops carrying genes that encode proteins toxic to insects. 
Since the first reports of transgenic plants appeared in 1984 
(Horsch et al. 1984) there has been very rapid progress 
directed at using this technology for the practical ends of 
crop improvement (James 2008). 

As an example, transgenic plants expressing the Cry 
genes from the soil bacterium Bacillus thuringiensis (Bt) 
has become the most prevalent method of insect control for 
several commercial crops. Besides the cry genes from Bt, 
other bacterial genes such as choM and ipt from Actinomy-
ces and Agrobacterium, respectively, have strong insectici-
dal properties and have been transformed into cotton, brin-
jal, tobacco plants, etc. in order to determine their ability to 
control insect infestation (Jauhar 2006). European corn 
borer [ECB, Ostrinia nubilalis (Hübner)], for example, 
causes a loss of up to 2000 million US$ annually in the 
USA alone (Hyde et al. 1999). Resistance breeding by con-
ventional means is cumbersome and fraught with uncer-
tainty. To breed a corn cultivar with resistance or even par-
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tial resistance to ECB may well take 10 to 15 years by 
traditional breeding, provided a suitable resistance donor is 
available. Thus, through 12 years of breeding, Syngenta, a 
Swiss agrochemical company, was able to produce a corn 
cultivar with only 10% resistance to ECB. However, a gene 
from a soil-borne bacterium, Bt, when bioengineered into 
the corn genome, confers almost complete resistance to 
ECB. This is an efficient means of eliminating the pest 
damage and pesticide application without affecting grain 
yields. Thus, Bt-corn acquired the capacity of an efficient 
pesticide a biopesticide. It took Syngenta only 5 years to 
engineer the Bt gene into corn. Scientists at the University 
of Minnesota estimated that farmers averaged several times 
greater returns on their investment by using Bt corn for 
insect control, compared to the use of a chemical insecticide 
(Ostlie et al. 1997). The Bt corn hybrids had 4 to 8% higher 
grain yields than standard hybrids when infested with ECB 
(Lauer and Wedberg 1999). Moreover, Bt corn is beneficial 

to the environment and the Bt-induced insect resistance in 
corn is much safer to farmers and other field workers, 
compared with the use of a chemical insecticide. Based on 
safety data, the U.S. Environmental Protection Agency 
(EPA) authorized commercial planting of Bt corn varieties 
(Palevitz 2001). Several transgenic crops with insecticidal 
genes have been introduced in temperate regions of the 
world (Sharma et al. 2003). Transgenic rice varieties resis-
tant to yellow stem borer [Scirpophaga incertulas (Walker)] 
have been produced in India (Ramesh et al. 2004). Because 
of its higher productivity and positive health effects through 
reduced pesticide use, Bt cotton has been commercialized 

aggressively especially in Asian countries like China 
(Huang et al. 2002a) and India (Whitfield 2003). Carrière et 
al. (2003) found long-term regional suppression of pink 
bollworm [Pectinophora gossypiella (Saunders)] by Bt cot-
ton. Bt rice has the potential to eliminate yield losses caused 
by lepidopteran insects, estimated at 2 to 10% of Asia's an-
nual rice yield of 523 million tons (High et al. 2004). Field 
trials of transgenic rice suggested high tolerance of trans-
genic rice against yellow stem borer (Bashir et al. 2004). 
Most recently, an insect-resistant variety GM Xianyou 63 
that was produced by inserting a Chinese-created B. thurin-
giensis gene, showed resistance to rice stem borer (S. incer-
tulas) and leaf roller [Cnaphalocrocis exigua (Butler)] and 
is on the threshold of being released for commercial cultiva-
tion in China. This insect-resistant variety is reported to 
benefit small farmers because of higher crop yields and 
reduced use of pesticides, which is important for health rea-
sons (Huang et al. 2005). 

Cotton boll weevil larvae, which feeds inside young 
fruits (bolls) is one of the most damaging cotton pests in the 
United States. The choM gene, isolated from Actinomyces 
A19249, encodes the enzyme cholesterol oxidase (ChoM), 
which has powerful insecticidal properties against the boll 
weevil larvae (Corbin et al. 1994). This enzyme acts by 
oxidizing cholesterol in the insect’s midgut epithelial mem-
brane, disrupting the physical and functional properties of 
the membrane and causing death. Corbin et al. (2001) deve-
loped transgenic tobacco plants expressing the Actinomyces 
ChoM gene. The transgenic tobacco plants were produced 
through Agrobacterium-mediated transformation. The re-
searchers observed that the mortality rate of cotton boll 
weevil larva feeding on these transgenic plants ranged from 
54 to 87%. These data indicate that expression of bacterial 
ChoM in the tissues of transgenic plants can result in an 
effective and environmentally safe eradication method 
against cotton boll weevil. 

Tobacco hornworm (caterpillars of Manduca sexta) is 
one of the most destructive insect pests of tobacco plants. 
The transfer of the Agrobacterium ipt gene, encoding cyto-
kinin isopentenyl transferase, to transgenic plants has been 
shown to increase the levels of endogenous cytokinin and 
effectively enhance the resistance of plants to a number of 
insects. Smigocki et al. (1993) introduced the ipt gene into 
tobacco plants by Agrobacterium-mediated transformation. 
The transgene was placed under the control of a wound-

inducible promoter from the potato proteinase inhibitor II 
(PI-IIK) gene. Transgenic tobacco plants had a 25- to 35-
fold increase in ipt mRNA following induction by woun-
ding of the plant tissue. Exogenous application of the trans-
genic leaf crude extracts reduced the hatch rate of horn-
worm eggs by 30%. In insect feeding assays, hornworm 
larvae consumed up to 70% less leaf material from the 
transgenic tobacco plants compared to wild-type plants. 

Mehlo et al. (2005) engineered plants with a fusion pro-
tein combining the �-endotoxin Cry1Ac with the galactose-
binding domain of the non-toxic ricin B-chain (RB). Trans-
genic rice and corn plants designed to express the fusion 
protein (BtRB) were significantly more toxic in insect bio-
assays than those containing the Bt gene alone, due to in-
creased number of potential fusion protein-receptor inter-
actions at the molecular level in target insects. Transgenic 
rice plants overexpressing ASAL under the control of 
phloem specific promoters at the insect feeding site were 
constructed by Bandyopadhyay et al. (2001). The trans-
genic plants contained high level of ASAL (1.01% of total 
soluble protein) and showed adverse effect on survival, 
growth and populations of brown planthopper and green 
leafhopper pests (Saha et al. 2006). Recently, Choi et al. 
(2009) isolated the Brassica rapa Defensin 1 (BrD1) gene 
and introduced it into rice (Oryza sativa L.) to produce 
brown planthopper (Nilaparvata lugens) resistant transgenic 
plants. 

The simultaneous introduction of three genes expres-
sing insecticidal proteins (Cry1Ac, Cry2A, and Gna) into 
rice to control three major pests (rice leaf folder, yellow 
stemborer and the brown planthopper) imparted more resis-
tance than combinations of only two of these transgenes 
(Bano-Maqbool et al. 2001). Another study of transgene 
pyramiding showed that transgenic cotton containing two Bt 
genes (Cry1Ac and Cry2Ab) performed better than either 
the single gene Cry1Ac or the Cry2Ab transgenic cotton 
(Jackson et al. 2004). A cry2Aa gene with a sequence-modi-
�ed open reading frame encoding an insecticidal crystal 
protein from Bt was introduced into chickpea (Cicer arieti-
num L.) by Acharjeea et al. (2010). Insect bioassays using 
the progeny of selected trangenic lines showed elevated 
level of resistance to pod borer larvae (Helicoverpa armi-
gera). The genetic transformation and pyramiding of aproti-
nin-expressing sugarcane with cry1Ab was also utilized to 
enhance the level of resistance in sugracnce towards C. 
infuscatellus (Arvinth et al. 2010). As a result, transgenics 
sugarcane produced considerably lower percentage of dead-
hearts in comparision to untransformed plants. Zheng et al. 
(2005) expressed Cry1Ca in transgenic shallots under the 
control of a chrysanthemum Rubisco small subunit promo-
ter, and the transgenic plants showed high resistance to beet 
armyworm. Similarily, a modified novel cry1C* gene (Tang 
and Lin 2007) was driven by the rice rbcS promoter, when 
introduced into Zhonghua 11 (Oryza sativa L.) by Agrobac-
terium-mediated transformation. Transgenic plants were 
examined for both insect resistance and agronomic traits 
under field conditions against yellow stem borer (Tryporyza 
incertulas), striped stem borer (Chilo suppressalis) and leaf 
folder (Cnaphalocrocis medinalis) (Ye et al. 2009). Weng et 
al. (2010) synthesized a truncated insecticidal gene m-
cry1Ac by increasing its GC content from 37.4 to 54.8%, 
based on the codon usage pattern of sugarcane genes, and 
transferred it into two sugarcane cultivars (ROC16 and 
YT79-177). In a greenhouse plant assay, about 62% of the 
transgenic lines exhibited excellent resistance to heavy in-
festation by stem borers. In field trials, the m-cry1Ac trans-
genic sugarcane lines expressing high levels of Cry1Ac 
were immune from insect attack. 

The plant expression vectors harbouring the bivalent 
Vitreoscilla haemoglobin VHb gene and insectidal gene 
insectidal gene (GFMcryIA) were sucessfully transferred to 
tobacco plants by Youru and Sandui (2010). The toxicity 
assay indicated that most of the transgenic plants showed 
high resistance to Heliothis armigera. Among 32 transgenic 
tobacco plants, 46.8% of the transgenic plants showed high 
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resistance to the insect. Taken together, the findings from 
these studies indicate a promising potential of engineering 
an insect-resistant gene to tailor its protein expression levels 
in transgenic sugarcane to combat insect infestations. Wang 
and Guo (2010) transferred synthesized VHb gene and in-
sectidal gene GFMcryIA to tobacco plants by Agrobacte-
rium-mediated transformation. Toxicity assay indicated that 
insectidal gene expressed pesticidal toxin protein. The net 
weight of transgenic tobacco plants exceeded that of non-
transgenic ones by 8%. Compared to non-transgenic tobacco 
plants, transgenic plants appeared to be high-yielding, 
insect-resistant varieties. 

Various studies have illustrated the importance of conti-
nued identification of bacterial genes and genes from other 
sources (Table 1) that have insecticidal properties for the 
control of imprtantant agricultural insects in a more effici-
ent and environmentally safe manner. 

 
Trangenics for fungal disease resistance 
 
With the beginning of the molecular era of plant biology in 
the early 1980s, many complex mechanisms that evolved in 
plants in response to pathogen infection have been identi-
fied. The role of multitude genes that are involved in im-
mune responses after fungus infestation and the various 
pathways involved therein, have been elucidated (Melchers 
and Stuiver 2000). Transgenic plants have been produced 
with genes involved in differnet pathways to enhance dis-
ease resistance against fungal pathogens. The first report on 
developing fungus resistant transgenic plant came in 1991. 
Broglie et al. (1991) constitutively expressed bean chitinase 
in tobacco and Brassica napus to enhance resistance towards 
Rhizoctonia solani. Similarly, antifungal genes have been 
engineered in various crop plants to render resistance 
against fungal pathogens (Jauhar and Khush 2002; Sahra-
wat et al. 2003). The role of chitinases in fungal protection 
has been documented in rice (Datta et al. 2001; Itoh et al. 
2003). Transgenic peanut expressing a tobacco chitinase 
gene was shown to possess enhanced resistance to the late 
leaf spot caused by Phaeosariopsis personata (Rohini and 

Sankara Rao 2001; Anuradha et al. 2008). Genetic engineer-
ing has been employed to contain Fusraium head blight, a 
ravaging disease of wheat (Anand et al. 2003, 2004). Ex-
pression of genes for suitable pathogenesis related proteins 
and defensins offers a suitable approach for controlling dis-
eases that affect crop productivity. Some proteins, called 
defensins, are small cysteine-rich peptides with antimicro-
bial activity. Transgenic expression of plant defensins has 
been reported to enhance protection in vegetative tissues 
against pathogen attack. Constitutive expression of RsAFP-
2 enhanced resistance of tobacco plants to Alternaria longi-
pes (Terras et al. 1995) and tomato to Alternaria solani 
(Parashina et al. 2000) and rice to M. grisea and R. solani 
(Jha and Chattoo 2010). Canola expressing a pea defensin 
showed enhanced resistance against blackleg disease caused 
by Leptosphaeria maculans (Wang et al. 1999). The consti-
tutive expression of an alfalfa defensin in potato provided 
robust resistance against the agronomically important fun-
gus Verticillium dahliae under field conditions (Gao et al. 
2000). Overexpression of BSD1 (stamen specific defensin) 
in transgenic tobacco plants enhanced their tolerance 
against the pathogen Phytophthora parasitica (Park et al. 
2002). Another alfalfa defensin was shown to inhibit the 
growth of the FHB pathogen Fusarium graminearum in 
vitro in wheat (Spelbrink et al. 2004). The generation of 
transgenic tomato plants constitutively expressing the chili 
defensin (cdef1) gene resulted in enhanced resistance 
against Phytophthora infestans and Fusarium spp. (Zainal 
et al. 2009). Expression of Dahlia defensin, Dm-AMP1, in 
rice directly inhibits the pathogen, Magnaporthe oryzae and 
Rhizoctonia solani. It was observed that constitutive expres-
sion of Dm-AMP1 suppresses the growth of M. oryzae and 
R. solani by 84 and 72%, respectively (Jha et al. 2009). 
Chenault et al. (2005) expressed a rice chitinase and an 
alfalfa glucanase in transgenic peanut and observed en-
hanced resistance against Sclerotinia blight in the transgenic 
plants. Expression of a barley oxalate oxidase in transgenic 
peanut also enhanced resistance to Sclerotinia minor 
(Livingstone et al. 2005). Overexpression of pepper patho-
gen induced genes CAPIP2, CASAR82A and RAV1 in trans- 

Table 1 Transgenic crops engineered for enhanced resistance against different insect pests. 
Transgenic plant Gene Insect Reference 
Tobacco VHb and GFMcryIA Heliothis armigera Youru and Sandui 2010 
Chickpea cry2Aa Helicoverpa armigera Acharjeea et al. 2010 
Sugarcane Cry1Aa + Cry1Ab+ Cry1Ac Chilo infuscatellus Arvinth et al. 2010 
Sugarcane m-cry1Ac C. infuscatellus Weng et al. 2010 
Rice BrD Nilaparvata lugens Choi et al. 2009 
Sugarcane Aprotinin Scirpophaga excerptalis Christy et al. 2009 
Tobacco Magi 6 Spodoptera frugiperda Hernández-Campuzano et al. 2009 
Chickpea ASAL Aphis craccivora Chakraborti et al. 2009 
Rice pin2 Scirpophaga incertulas Rao et al. 2009 
Rice ASAL N. virescens and N. lugens Saha et al. 2006 
Sorghum cry1Ac Chilo partellus (Swinhoe) Girijashankar et al. 2005 
Rice cry1Ac, 2A S. incertulas and S. medinalis Bashir et al. 2005 
Rice cry1Ac and gna S. incertulas and N. lugens Ramesh et al. 2004 
Rice cry1Ac Scirpophaga incertulus Khanna and Raina 2002 
Rice Gna Nilaparvata lugens (Stal) Foissac et al. 2000 
Rice SKTI Nilaparvata lugens (Stal) Lee et al. 1999 
Potato CpTi Lacanobia oleracea (Linnaeus) Gatehouse et al. 1999 
Rice gna Nilaparvata lugens (Stal) Rao et al. 1998 
Rice cry1Ab Scirpophaga incertulus Datta et al. 1998 
Rice PI-II C. suppressalis (Walker) Daun et al. 1996 
Rice CpTi S. incertulas Xu et al. 1996 
Tobacco PI-II Spodoptera exigua (Hubner) Jongsma et al. 1995 
Tobacco M.sexta PI Bemisia tabaci (Gennadius) Thomas et al. 1995 
Pea �-amylase Callosobrunchus spp. Shade et al. 1994 
Rice cry1Ab Chilo suppressalis (Walker) Fujimoto et al. 1993 
Potato cry3a Leptinotarsa decemlineata (Say) Perlak et al. 1993 
Corn cry1Ab Ostrinia nubilalis (Hubner) Koziel et al. 1993 
Cotton cry1Ab/1Ac Pectinophora gossypiella (Saunders) Perlak et al. 1990 
Tobacco PI-II Menduca sexta (Johannson) Johnson et al. 1989 
Tobacco CpTi Heliothis virescens (Fabricius) Hilder et al. 1987 
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Table 2 Transgenic crops engineered for enhanced resistance against fungal pathogens. 
Transgenic crop Gene/gene product Donor Target pathogen References 
Rice Rs-AFP2 Raphanus sativus Magnaporthe oryzae and Rhizoctonia 

solani 
Jha and Chattoo 2010

Cotton NPR1 Arabidopsis Verticillium dahliae, Fusarium oxysporum 
f. sp. vasinfectum, Rhizoctonia solani, and 
Alternaria alternata 

Parkhi et al. 2010 

Cotton hpaXoo Xanthomonas oryzae pv. 
oryzae 

Verticillium dahliae Miao et al. 2010 

Poplar (Populus 
tomentosa Carr.) 

LJAMP2 Leonurus japonicus Alternaria alternata and Colletotrichum 
gloeosporioides 

Jia et al. 2010 

Tomato cdef1 Capsicuum annuum Phytophthora infestans and Fusarium spp Zainal et al. 2009 
Rice Dm-AMP1 Dahlia Magnaporthe oryzae and Rhizoctonia 

solani 
Jha et al. 2009 

Carrot Acidic wheat class IV chitinase + 
acidic wheat � 1,3-glucanase + rice 
cationic peroxidase (POC1) 

Wheat, rice Botrytis cinerea and Sclerotinia 
sclerotiorum. 

Wally et al. 2009 

Rice hrf1 X. oryzae pv. oryzae M. grisea Shao et al. 2008 
Carrot Microbial factor 3 (MF3) Pseudomonas 

fluorescence 
Alternaria dauci, Alternaria radicina and 
Botrytis cinerea 

Baranski et al. 2007 

Tobacco hrp N Erwinia amylovora Botrytis cinerea Sohn et al. 2007 
Rice PRm5 Maize Enhanced resistance to multiple fungal 

pathogen 
Gomez-ariza et al. 
2007 

Carrot Lipid transfer protein gene and 
chitinase 

Wheat, barley Foliar fungal pathogen Jayaraj and Punja 
2007 

Tobacco Vv WRKY 1 Grape Multiple fungal pathogen Marchive et al. 2007
Rice RCH10, RAC22, �-glucanase, �- RIP Rice, alfalfa, barley Magnaporthe grisea Zhu et al. 2007 
Barley Chitinase and Thaumatine like protein Rice Resistance not tested Tobias et al. 2007 
Tobacco PR1 W. japonica B. cinerea Kiba et al. 2007 
Arabidopsis SAR 8.2 gene (CASAR82A) Pepper Fusarium and Botrytis Lee and Hwang 2006
Rice Allene oxide synthase Rice Magnaporthe grisea Mei et al. 2006 
Wheat Ace-AMP1 Onion Enhanced antifungal activity Ro-barman et al. 2006
Tobacco GAFP (gastrodia antifungal gene) Gastrodia (orchid) Rhizoctonia spp., Phytophthora spp. Cox et al. 2006 
Rice PR3 T. viride R. solani Balasubramaniam 

2005 
Tobacco PR3 Bean R. solani Mohandas 2005 
Rice Cercosporin A Giant silk moth Magnaporthe grisea Coca et al. 2006 
Tobacco hrp N Erwinia amylovora Botrytis cinerea Jang et al. 2006 
Pearl millet Afp Aspergillus giganteus Rust and Downy mildew Girgi et al. 2006 
Wheat NPR 1 Arabidopsis Fusarium graminaereum Makandar et al. 2006
Rice AFP Aspergillus giganteus Magnaporthe grisea Moreno et al. 2005 
Wheat Stilbene synthase Grape Puccinia recondite Serazetdinova et al. 

2005 
Tobacco Cercopin-A-melittin peptide gene Hybrid peptide Fusarium solani Yevtushenko et al. 

2005 
Italian rye grass Chitinase Rice Crown rust disease Takahashi et al. 2005
Tomato NPR1 Arabidopsis Resistance to fungal and bacterial disease Lin et al. 2004 
Rice AFP Aspergillus giganteus Magnaporthe grisea Coca et al. 2004 
Arabidopsis Fusarium specific antibody linked to 

antifungal peptides 
Fusion proteins Multiple fungal pathogens Peschen et al. 2004 

Rice ech42, nag 70, gluc 78 Trichoderma 
atroviridae 

Magnaporthe grisea Liu et al. 2004 

Peanut PR2 Alfalfa S. minor Chenault et al. 2003 
Pea nut PR3 Rice S. minor Chenault et al. 2003 
Rice Glucose oxidase gene Aspergillus niger Magnaporthe grisea Kachroo et al. 2003 
Sunflower Oxalate oxidase gene Wheat Sclerotinia sclerotiorum Hu et al. 2003 
Rice Chitinase C (Chi C) Streptomyces griseus Magnaporthe grisea Itoh et al. 2003 
Wheat (spring) Thaumatin like protein, chitinase, 

glucanase 
Wheat (Sumai-3 
cultivar) 

Fusarium graminearum Anand et al. 2003 

Tomato Pn-AMPs (hevein like protein) Pharbitis nil Phytophthora spp., Fusarium spp. Lee et al. 2003 
Tobacco and 
banana 

MSI-99 peptide African clawed frog Alternaria, Botrytis, Mycosphaerella 
musicola 

Chakrabarti et al. 2003

Tomato PR2 Tobacco F. oxysporum Foolad et al. 2002 
Tobacco Mannitol dehydrogenase Celery Alternaria alternata Jennings et al. 2002 
Tobacco Spi-2 (peroxidase gene) Norway spruce Phytophthora spp. Elfstrand et al. 2002 
Apple Endochitinase, Exochitinase Trichoderma harzianum Venturia inequalis Bolar et al. 2001 
Pea nut Chitinase Tobacco Cercospora arachidicola Rohini and Rao 2001
Rice Puroindolines (antimicrobial peptide 

gene) 
Wheat Magnporthe grisea, Rhizoctonia solani Krishnamurthy et al. 

2001 
Tobacco Magainin analog Xenopus laevis Peronospora tabacina Li et al. 2001 
Wheat Chitinase Barley Blumeria graminis, Puccinia recondita Oldach et al. 2001 
Poplar Oxalate oxidase Wheat Septoria musiva Liang et al. 2001 
Rice Chitinase Rice Rhizoctonia solani Datta et al. 2001 
Rice Chitinase Rice Rhizoctonia solani Datta et al. 2000 
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genic plants resulted in disease resistance (Lee and Hwang 
2006; Sohn et al. 2006). The chit1 gene from the entomo-
pathogenic fungus Metarhizium anisopliae, encoding the 
endochitinase CHIT42, showed enhanced resistance in 
tobacco plants against Rhizoctonia solani (Kern et al. 2010). 
Three genes, ech42, nag70 and gluc78, encoding hydrolytic 
enzymes, from a biocontrol fungus Trichoderma atroviride, 
were introduced in single or in combinations into rice. 
Gluc78-overexpressing transgenic plants showed enhanced 
resistance to Magnaporthe grisea, while transgenic plants 
over expressing the ech42 gene encoding for an endochiti-
nase increased resistance to R. solani, resulting in a reduc-
tion of 62% in the sheath blight disease index (Liu et al. 
2004; Shah et al. 2008). 

Shao et al. (2008) introduced a harpin-encoding gene 
hrf1, derived from X. oryzae pv. oryzae, into rice and gene-
rated transgenic rice lines with overexpression of the hrf1 
gene. Disease assays revealed that the hrf1-overexpressing 
transgenic rice plants and were highly resistant to all major 
M. grisea races in rice-growing areas. Jhang et al. (2010) 
introduced antifungal puroindoline proteins, PINA and 
PINB into corn under the control of a corn Ubiquitin pro-
moter. Two Pina/Pinb expression–positive transgenic events 
were evaluated for resistance to Cochliobolus heterostro-
phus, the corn southern leaf blight (SLB) pathogen. Trans-
genic corn expressing Pins showed significantly increased 
tolerance to C. heterostrophus, averaging 42.1% reduction 
in symptoms. 

It is evidenced from the aforementioned reports that 
genetic transformation approach is an example of environ-
mentally friendly biotechnology that could save threatened 
agricultural landscapes and ecosystems worldwide (Gart-
land et al. 2002, 2003). Several examples where this tech-
nology have been applied to different crops to combat fun-
gal diseases (Table 2). 

 

Transgenics for bacterial disease resistance 
 
Many bacterial genes involved in pathogenicity have been 
identified and expressed in transgenic plants. The genetic-
ally transformed plants carrying these genes showed spon-
taneous activation of different defense mechanisms, leaving 
the plant in a elevated state of defense. This ‘defense mode’ 
greatly enhances the plant’s ability to quickly react to a 
pathogen invasion and more successfully overcome the in-
fection. This has been made possible by genetic engineering 
by using genes found in fungi, insects, animals and other 
plants. Antimicrobial proteins, peptides, and lysozymes that 
naturally occur in insects (Jaynes et al. 1987), plants 
(Broekaert et al. 1997), animals (Vunnam et al. 1997), and 
humans (Mitra and Zhang 1994; Nakajima et al. 1997) are 
now a potential source of plant resistance. 

Antibacterial lytic peptides like cecropins are found in 
the hemolymph of the giant silk moth (Hyalophora cecro-
pia) (Durell et al. 1992; Tripathi et al. 2004). Transgenic 
tobacco plants expressing cecropins have increased resis-
tance to P. syringae pv. tabaci, causing wildfire of tobacco 
(Huang et al. 1997). Synthetic lytic peptide analogs, Shiva-
1 and SB-37, produced from transgenes in potato plants 
reduce bacterial infection caused by Erwinia carotovora 
subsp. atroseptica in transgenic potato plants (Arce et al. 
1999). Similarly, transgenic rice plants overexpressing cec-
ropin B gene showed a significant reduction in development 
of lesions caused by X. oryzae pv. oryzae (Coca et al. 2004). 
Moreover, expression of SB-37 lytic peptide analog in trans-
genic apple plants showed increased resistance to E. amylo-
vora under field tests (Norelli et al. 1998). Further, the ex-
pression of the D4E1 in poplar has resulted resistance to 
Agrobacterium tumefaciens and Xanthomonas populi (Men-
tag et al. 2003; Montesinos 2007). 

Similarily, attacins are another group of antibacterial 
proteins produced by Hyalophora cecropia pupae (Hult-

Table 2 (Cont.) 
Transgenic crop Gene/gene product Donor Target pathogen References 
Grape Endochitinase Trichoderma harzianum Botrytis cinerea Kikkert et al. 2000 
Tobacco Chitinase Baculovirus Alternaria alternate Shi et al. 2000 
Potato Defensins (alfAFP) Alfalfa Verticillium dalhiae Gao et al. 2000 
Potato Cercosporin-melittin cationic peptide Synthetic gene Multiple pathogens Osusky et al. 2000 
Tomato Gene1-2 Tomato Fusarium spp. Mes et al. 2000 
Tobacco Sarcotoxin peptide gene Sarcophaga peregrine Rhizoctonia solani, Pythium 

aphanidermatum, Phytophthora nicotianae 
Mitsuhara et al. 2000

Tobacco Chloroperoxidase Pseudomonas Colletotrichum destructivum Rajsekaran et al. 2000
Wheat RIP Barley Blumeria graminis Bieri et al. 2000 
Alfalfa Resveratrol synthase Peanut Phoma medicaginis Hipsking and Paiva 

2000 
Tomato Defensin Raddish Alternaria solani Parashina et al. 2000
Carrot Human lysozyme Human Erysiphe heraclei, Alternaria dauci Takaichi and Oeda 

2000 
Grape Chitinase Rice Uncinulla necatar, Elsinoe ampelina Yamamoto et al. 2000
Grape Polygalacturoase inhibiting protein Pear Botrytis cinerea Powell et al. 2000 
Tobacco Salicylic acid synthase Bacterial origin Oidium lycopersicon Verberne et al. 2000 
Carrot Chitinase Tobacco Alternaria dauci, A. radicina, 

Colletotrichum corotae 
Melchers and Stuvier 
2000 

Potato Lactoferrin Human Not tested Chong and Langridge 
2000 

Tobacco Antimicrobial peptide Synthetic Colletotrichum destructivum Cary et al. 2000 
Tomato Oxalate decarboxylase Collybia velutipes Sclerotinia sclerotiorum Kesarwani et al. 2000
Wheat TL protein Rice Fusarium graminearum Chen et al. 1999 
Rice TL protein Rice Rhizoctonia solani Datta et al. 1999 
Rice RIP Maize No effect on M. grisea or R. solani Kim et al. 1999 
Potato Osmotin gene Tobacco Phytophthora infestans Li et al. 1999 
Chrysanthemum Chitinase Rice Botrytis cinerea Takatsu et al. 1999 
Geranium Antimicrobial protein Onion Botrytis cinerea Bi et al. 1999 
Wheat PR5 Barley E. graminis Bliffeld et al. 1999 
Tobacco �-cryptogein elicitor Phytophthora cryptogea Phytophthora parasitica Tepfer et al. 1998 
Tobacco PAPII Phytolacca americana Broad spectrum resistance to viral and 

fungal pathogens 
Wang et al. 1998 

Potato Endochitinase Trichoderma harzianum Foliar and soil borne fungal pathogen Lorito et al. 1998 
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mark et al. 1983). Attacin expressed in transgenic potato en-
hanced its resistance to bacterial infection by E. carotovora 
subsp. atrospetica (Arce et al. 1999). Transgenic pear and 
apple expressing attacin genes have significantly enhanced 
resistance to E. amylovora in in vitro and greenhouse (Ko et 
al. 2000). In field tests, reduction of fire blight disease has 
been observed in transgenic apples expressing attacin genes 
(Norelli et al. 1999). 

The lysozyme genes have been used to confer resistance 
against plant pathogenic bacteria in transgenic plants (Tru-
del et al. 1995). T4L, from the T4-bacteriophage has been 
reported to enhance resistance of transgenic potato against 
E. carotovora, which causes bacterial soft rot (Düring et al. 
1993). Transgenic apple plants with the T4L gene showed 
significant resistance to fire blight infection (Ko 1999). 

Thionins are plant antimicrobial proteins which are able 
to inhibit a broad range of pathogenic bacteria in vitro 
(Molina et al. 1993). Carmona et al. (1993) reported the 
expression of alpha-thionin gene from barley in transgenic 
tobacco confers enhanced resistance to P. syringae. 

Pathosystem-specific plant resistance (R) genes have 
been cloned from several plant species (Bent 1996). The 
Bs2 resistance gene of pepper specifically recognizes and 
confers resistance to strains of X. campestris pv. vesicatoria 
that contain the corresponding bacterial avirulence gene, 
avrBs2 (Tai et al. 1999). Transgenic tomato plants expres-
sing the pepper Bs2 gene suppress the growth of X. campes-
tris pv. vesicatoria. 

Hatziloukas and Panopoulos (1992) used Agrobacte-
rium-mediated transformation to produce tobacco plants 
carrying the argK gene, which encodes ROCT. Since in 
plant cells OCT is produced in the chloroplast, argK was 

fused to the chloroplast transit sequence of the pea Rubisco 
small subunit (rbcS) gene for localized expression of the 
enzyme. The ROCT enzyme produced by the transgenic 
tobacco showed greater resistance to phaseolotoxin. In a 
different approach, Rizhsky and Mittler (2001) used the 
Halobacterium halobium bacterio-opsin (bO) gene under 
the control of the wound-inducible promoter Pin2, to deve-
lop transgenic tobacco plants resistant to Pseudomonas 
syringae pv. tabaci via Agrobacterium-mediated transfor-
mation. Bacterio-opsin activates the self-defense mecha-
nisms in plants by enhancing proton pumping across the 
cell membrane (Mittler et al. 1995). Transgenic tobacco 
plants expressing the bO gene produced hypersensitive res-
ponse (HR), and showed enhanced expression of different 
types of defense-related proteins such as chitinase, gluca-
nase, and salicylic acid. The resulting transgenic tobacco 
plants expressing the bO gene, when challenged with P. 
syringae pv. tabaci, slowed down the growth of the patho-
gen. Tang et al. (2001) showed that transgenic rice plants 
expressing ferredoxin like protein (PFLP) from sweet 
pepper enhanced resistance to pathogenic Gram-negative 
bacteria. Along the same line, the expression of hrap gene 
in transgenic potatoes may enhance their resistance to 
pathogenic Gram-negative bacteria. Haung et al. (2007) 
demonstrated that expressing sweet pepper ferredoxin-I 
protein (PFLP) in transgenic plants can enhance disease 
resistance to E. carotovora subsp. carotovora that attack 
tomato plants. Similarly, Pandey et al. (2005) also showed 
that constitutive expression of the hrap gene in Arabidopsis 
enhanced the level of disease resistance towards E. caroto-
vora subsp. carotovora. 

An interesting example concerns the NPR1 (or NIM1) 

Table 3 Transgenic crops engineered for enhanced resistance against bacterial pathogens. 
Transgenic plant Gene/gene product Source Target pathogen Reference 
Rice Np3 and Np5 Chinese shrimp Xanthomonas oryzae pv. oryzae Wei et al. 2011 
Tomato Cationic lytic peptide cecropin B Hyalophora cecropia Ralstonia solanacearum and 

Xanthomonas campestris pv. 
vesicatoria 

Jan et al. 2010 

Potato magainin II Synthetic peptide Erwinia carotovora Barrell and Conner 2009
Tomato ferredoxin-I protein Sweet pepper Ralstonia solanacearum Huang et al. 2007 
Poplar hybrid (Populus 
tremula L. x Populus alba L) 

D4E1 Synthetic peptide Agrobacterium tumefaciens and 
Xanthomonas populi 

Mentag et al. 2007 

Rice Rxo1 Maize Xanthomonas oryzae pv. oryzae Zhao et al. 2005 
Rice NPR1 orthologue (NH1) Rice Xanthomonas oryzae pv. oryzae Chern et al. 2005 
Arabidopsis hrap Sweet pepper E. carotovora subsp. carotovora Pandey et al. 2005 
Potato (cv. cv. Irish Cobbler) shiva-1 Synthetic peptide Erwinia carotovora Yi et al. 2004 
Rice cecropin B  X. oryzae pv. oryzae Coca et al. 2004 
Rice GOX/ Glucose oxidase Aspergillus niger X. oryzae pv. oryzae Kachroo et al. 2003 
Tobacco M28L/mutated esculentin 

gene 
Bean Pseudomonas aeruginosa, P. 

syringae pv. tabaci 
Ponti et al. 2003 

Poplar hybrid (Populus 
tremula L. x Populus alba L) 

D4E1 Synthetic peptide Agrobacterium tumefaciens and 
Xanthomonas populi 

Mentag et al. 2003 

Tomato Lactoferrin gene Tomato Ralstonia solanacearum Lee et al. 2002 
Rice ferredoxin-like protein (AP1) Sweet pepper Xanthomonas oryzae pv. oryzae Tang et al. 2001 
Tobacco bO/ Bacterio-opsin (BO) Halobacterium 

halobium 
Pseudomonas syringae pv. tabaci Rizhsky and Mittler 2001

Tobacco expI /N-oxoacyl-homoserine 
lactone (OHL) 

Erwinia carotovora Erwinia carotovora Mae et al. 2001 

Tobacco aiiA /Acyl-homoserine lactonase Bacillus sp. 240B1 Erwinia carotovora Dong et al. 2001 
Rice cecropin B Bombyx mori Xanthomonas oryzae pv. oryzae Sharma et al.2000 
Apple/Pear attacin E gene (attE) Sarcophaga peregrina E. amylovora Ko et al.2000 
Potato 34-aa chimaeric peptide MsrA1+ 

melittin 
Bee venom E. carotovora ssp. atroseptica Osusky et al. 2000 

Potato cecropin SB-37  Erwinia carotovora subsp. 
atroceptica 

Arce et al. 1999 

Tomato Bs2 Pepper X. campestris pv. vesicatoria Tai et al. 1999 
Apple attacin E gene (attE) Sarcophaga peregrina E. amylovora Norelli et al. 1998 
Potato sarco gene coding for sarcotoxin 

IA 
Sarcophaga peregrina E. carotovora, P. syringae pv. 

lachrymans and R. solanacearum 
Galun et al. 1996 

Apple attacin E gene (attE) Sarcophaga peregrina E. amylovora Norelli et al. 1994 
Tobacco argK/ ROCT ornithine 

carbamoyltransferase 
Pseudomonas syringae Pseudomonas syringae pv. 

phaseolicola 
Hatziloukas and 
Panopoulos 1992 
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gene, a key defence regulator first identified in Arabidopsis 
(Durrant and Dong 2005). Transgenic rice plants over-ex-
pressing the rice NPR1 orthologue (NH1) acquire high 
levels of resistance to Xanthomonas oryzae pv. oryzae 
(Chern et al. 2005). In addition, Rxo1, an R-gene derived 
from maize (Zea mays), a non-host of the rice bacterial 
pathogen, Xanthomonas oryzae pv. oryzicola was success-
fully transformed into rice (Oryza sativa) and shown to con-
fer resistance against X. oryzae pv. oryzae (Zhao et al. 
2005). 

Besides genetic transformation, a new approach to pro-
tect plants against bacterial diseases is based on interference 
with the communication system, quorum-sensing, used by 
several phytopathogenic bacteria to regulate expression of 
virulence genes according to population density (Cui and 
Harling 2005). The enzyme, AiiA, isolated from bacterial 
strain, Bacillus sp. 240B1, was found to degrade the quo-
rum-sensing signalling molecule of the soft rot pathogen, 
Erwinia carotovora, and thereby rendering the bacteria in-
capable of infecting the host (Dong et al. 2000). Transgenic 
expression of AiiA in planta was subsequently demonstrated 
to provide significant enhancement of resistance against 
soft rot in potato (Dong et al. 2001). Recently, Tripathi et al. 
(2010) reported that the constitutive expression of the sweet 
pepper Hrap gene in banana results in enhanced resistance 
to BXW (Banana Xanthomonas wilt) caused by the bacte-
rium Xanthomonas campestris pv. musacearum. The majo-
rity of transgenic lines (six of eight) expressing Hrap did 
not show any symptoms of infection after artificial inocu-
lation of potted plants in the screen house, whereas control 
non-transgenic plants showed severe symptoms resulting in 
complete wilting. Transgenic tomato plant transformed with 
cationic lytic peptide cecropin B (CB), isolated from the 

giant silk moth (Hyalophora cecropia) demonstrated sig-
nificant resistance to bacterial wilt and bacterial spot dis-
eases Jan et al. (2010). The levels of CB expressed in trans-
genic tomato plants were ~0.05 μg in 50 mg of leaves. 

Integration of the CB gene into the tomato genome was 
confirmed by PCR, and its expression was confirmed by 
Western blot analyses. Comprehensive information on quo-
rum quenching has been recently documented by Kashyap 
et al. (2010), wherein authors have given a deep insight of 
this approach operating in various systems of phytopatho-
genic bacteria. Table 3 represents a detailed account on 
various crops engineered through genetic transformation, 
showing promise to reduce the harmful effects of bacterial 
pathogens. 

 
Transgenics for viral disease resistance 
 
Transgenic technology also offers an excellent option to 
protect crop plants against devastating viral pathogens 
(Wani and Sanghera 2010). Transformation of plants with 
nucleotide sequences derived from viral genomes has been 
shown to provide protection against the virus from which 
the sequences were derived. The evidence for such a patho-
gen-derived resistance (PDR) was provided by Powell-Abel 
et al. (1986), who demonstrated that transgenic tobacco 
plants expressing Tobacco mosaic virus (TMV) coat protein 
were resistant to the virus. Beachy et al. (1990) suggested 
that expression of a virus coat protein as a transgene in a 
plant confers resistance to the virus in direct proportion to 
the quantity of coat protein produced by the transformed 
plant. This novel technique opened up new avenues of con-
trolling viral diseases (Lomonossoff 1995; Bendahmane et 
al. 2007) in crop plants and fruit trees. Rice yellow mottle 
virus (RYMV) is a serious viral disease causing enormous 
losses in rice yields. Because of lack of a conventional 
solution to this problem, a transgenic approach based on 
PDR was successfully employed to produce an RYMV-resis-
tant rice variety (Pinto et al. 1999). Similarily, transgenic 
wheat plants, engineered with the coat-protein gene of 
Wheat streak mosaic virus (WSMV) conferred protection 
against some WSMV strains (Sivamani et al. 2002). The 
PDR technology offers a promising means for inducing 

virus resistance in a variety of plants (Wesseler 2003) inclu-
ding potato (Schubert et al. 2004). Coat-protein–mediated 
resistance has helped to control Papaya ring spot virus 
(PRSV) in papaya (Carica papaya L.) in Hawaii (Gonsalves 
1998; Ferreira et al. 2002) and the papaya industry was 
spared from disaster posed by Papaya ring spot virus 
(PRSV) (Gonsalves 2003). 

Engineering virus resistance by using genes encoding 
viral RNAdependent RNA-polymerases (RdRps) was first 
reported for TMV (Golemboski et al. 1990). Biotechnologi-
cal approaches expressing sense and antisense RNA in 
transgenic plants have been employed successfully against 
Tomato golden mosaic virus (TGMV) (Day et al. 1991), 
TYLCSV (Bendahmane and Gronenborn 1997) and TYLCV 
(Yang et al 2004), confirming the suggestion that RNA 
silencing can be harnessed for antiviral defence (Lapidot 
and Friedman 2002). In attempts to improve transgenic 
resistance further, Pooggin et al. (2003) obtained recovery 
from virus infection in a transient assay using IR constructs 
containing the common region of the begomovirus Vigna 
mungo yellow mosaic virus (VMYMV). Gafni and col-
leagues obtained plants resistant to TYLCV by targeting the 
CP gene with an IR construct (Zrachya et al. 2007). Simi-
larly, Noris et al. (2004) and Ribeiro et al. (2007) produced 
transgenic plants expressing siRNAs against TYLCSV and 
Tomato chlorotic mottle virus (ToCMoV), respectively. More 
recent attempt to confer resistance to CMV using a small 
RNA pathway focused on transgenic artificial microRNAs 
(miRNA) that targeted a 21-nucleotide sequence within the 
2b gene by using an inverted-repeat construct (Qu et al. 
2007). When expressed in Arabidopsis, 64% of the plants 
were resistant to the target strain. A transformation system 
of pepper was set up using Agrobacterium that had been 
transfected with the coat protein gene, CMVP0-CP, with the 
aim of developing a new CMVP1-resistant pepper line. A 
large number of transgenic peppers (T1, T2 and T3) were 
screened for CMVP1 tolerance using CMVP1 inoculation. 
Transgenic peppers tolerant to CMVP1 were selected in a 
plastic house as well as in the field. Three independent T3 
pepper lines highly tolerant to the CMVP1 pathogen were 
found to also be tolerant to the CMVP0 pathogen. These 
selected T3 pepper lines were phenotypically identical or 
close to the nontransformed lines. However, after CMVP1 
infection, the height and fruit size of the non-transformed 
lines became shorter and smaller, respectively, while the T3 
pepper lines maintained a normal phenotype (Lee et al. 
2009). In a number of crops, transgenics resistant to an 
infective virus have been developed by introducing a 
sequence of the viral genome in the target crop by genetic 
transformation (Table 4). For the effective control of 
Papaya ringspot virus (PRSV) and Papaya leaf-distortion 
mosaic virus (PLDMV), an untranslatable chimeric cons-
truct containing truncated PRSV YK CP and PLDMV P-
TW-WF CP genes has been transferred into papaya (Carica 
papaya cv. ‘Thailand’) by Agrobacterium-mediated trans-
formation via embryogenic tissues derived from immature 
zygotic embryos of papaya (Kung et al. 2009). Based on 
sequence profile of silencing suppressor protein, HcPro, it 
was that PRSV-HcPro, acts as a suppressor of RNA silen-
cing through micro RNA binding in a dose-dependent man-
ner. In planta expression of PRSV-HcPro affects develop-
mental biology of plants, suggesting the interference of sup-
pressor protein in micro RNA-directed regulatory pathways 
of plants. Besides facilitating the establishment of PRSV, it 
showed strong positive synergism with other heterologous 
viruses as well (Mangrauthia et al. 2010). Therefore, resis-
tance in transgenic papaya can be overcome by PRSV with 
distant homology to the transgene, or by PRSV strains with 
HCPro that can sufficiently suppress the silencing mecha-
nism of transgenic papaya. It would therefore be important 
to develop transgenic papaya that could avoid the impact of 
these PRSV strains (Tripathi et al. 2008). 
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Table 4 Transgenic crops engineered for enhanced resistance against viral pathogens. 
Mechanism/Strategies 
employed 

Transgenic 
plant 

Source/gene product Virus Reference 

RNA interference Tobacco Pns10 Rice dwarf virus (RDV) Zhou et al. 2010 
 Rice Viroplasm matrix protein/Pns12 Rice dwarf virus (RDV) Shimizu et al. 2010 
 Common bean replication initiator protein (rep; AC1), 

transactivator protein (TrAP; AC2), 
replication enhancer protein (REn; 
AC3) and movement protein (BC1) 

Bean golden mosaic virus (BGMV) Aragão and Faira 2009 

Tobacco Coat protein (CP) Cowpea aphid-borne mosaic virus 
(CABMV) 

Mundembe et al. 2009 

Tobacco CP Cucumber mosaic virus (CMV) sub
group IB 

Srivastava and Raj 2008 

Tomato N gene Tomato spotted wilt virus (TSWV) Goldbach et al. 2003 
Tobacco N gene TSWV, Impatiens necrotic spot 

virus (INSV), Groundnut ringspot 
virus (GRSV) 

Vaira et al. 1995 

Tobacco CP CMV Cuozzo et al. 1988 
Papaya CP Papaya ringpost virus (PRSV) Gonsalves 1998 
Tobacco CP Tobacco mosaic virus (TMV) Powell Abel et al. 1986 
Tobacco CP Tobamoviruses (TMV) Nejidat and Beachy 1990 
Tobacco CP Cucumber mosaic virus (CMV) Namba et al. 1991 
Tobacco CP Cucumber mosaic virus (CMV) Quemada et al. 1991 
Cucumber CP Cucumber mosaic virus (CMV) Gonsalves et al. 1992 
Tobacco CP Cucumber mosaic virus (CMV) Yie et al. 1992 
Melon CP Cucumber mosaic virus (CMV) Gonsalves et al. 1994 
Tomato CP Cucumber mosaic virus (CMV) Xue et al. 1994 
Squash CP Cucumber mosaic virus (CMV) Tricoli et al. 1995 
Tomato CP Cucumber mosaic virus (CMV) Gielen et al. 1996 
Tomato CP Cucumber mosaic virus (CMV) Fuchs and Provvidenti 1996 
Tobacco CP Cucumber mosaic virus (CMV) Rizos et al. 1996 
Tobacco CP Cucumber mosaic virus (CMV) Singh et al.1998 
Tomato CP Cucumber mosaic virus (CMV) Kaniewski et al. 1999 
Tomato CP Cucumber mosaic virus (CMV) Tomassoli et al. 1999 
Tobacco CP Cucumber mosaic virus (CMV) Jacquemond et al. 2001 
Pepper CP Cucumber mosaic virus (CMV) Shin et al. 2002a 

Coat protein-mediated 
resistance 

Tobacco CP Alfalfa mosaic virus (AMV) Tumer et al. 1987a 
RNA dependent RNA 
polymerase-mediated 
resistance 

Tobacco Gene encoding viral RNA dependent
RNA-polymerases (RdRps) 

Tobacco mosaic virus (TMV) Golemboski et al. 1990 

Tobacco Modified tobacco mosaic virus 
replicase transgene 

Broad spectrum ressitance to 
Tobamoviruses (TMV) 

Donson et al. 1993 

Tobacco replicase gene (rep) Pea early browning virus RNA1 MacFarlane and Davies 1992
Tobacco rep Potato virus X (PVX) Braun and Hemenway 1992 
Tobacco rep Potato virus Y (PVY) Audy et al. 1994 
Tobacco rep Alfalfa mosaic virus (AMV) Brederode et al. 1995 
Tobacco rep Cucumber mosaic virus (CMV) Anderson et al. 1992 
Tobacco rep Cucumber mosaic virus (CMV) Zaitlin et al. 1994 
Tobacco rep Cucumber mosaic virus (CMV) Hellwald and Palukaitis 1994
Tobacco rep Cucumber mosaic virus (CMV) Suzuki et al. 1996 
Tomato rep Cucumber mosaic virus (CMV) Gal-On et al. 1998 
Tobacco rep Cucumber mosaic virus (CMV) Canto and Palukaitis 1998 

Replicase-mediated 
resistance 

Tobacco rep Cucumber mosaic virus (CMV) Wintermantel and Zaitlin 2000
Tobacco Sat-I17N Cucumber mosaic virus (CMV) Harrison et al. 1987 
Tobacco Sat-I17N Cucumber mosaic virus (CMV) Jacquemond et al. 1988 
Tobacco Sat-RNA1, Sat-RNA1 + CP (CMV-O) Cucumber mosaic virus (CMV) Yie et al. 1992 
Tobacco Sat-S Cucumber mosaic virus (CMV) Peña et al. 1994 
Pepper Sat-I17N Cucumber mosaic virus (CMV) Kim et al. 1997 

RNA satellites 

Tomato Sat-S Cucumber mosaic virus (CMV) Stommel et al. 1998 
Tobacco CMV-D Cucumber mosaic virus (CMV) Tumer et al. 1987a 
Tobacco CMV-Q Cucumber mosaic virus (CMV) Ali et al. 1988 

Antisense RNAs 

Tobacco CMV-D Cucumber mosaic virus (CMV) Cuozzo et al. 1988 
Tobacco, potato PAP (Phytolacca americana) Cucumber mosaic virus (CMV) Lodge et al. 1993 RIP 
Tobacco TCS (Trichosanthes kirilowii) Cucumber mosaic virus (CMV) Krishnan et al. 2002 
Tobacco pac1 (Yeast) Cucumber mosaic virus (CMV) Watanabe et al. 1995 
Tobacco 2-5Aase + RNaseL Cucumber mosaic virus (CMV) Ogawa et al. 1996 

Ribonucleases 

Tobacco 2-5Aase + RnaseL Cucumber mosaic virus (CMV) Honda et al. 2003 
Tobacco 2-5Aase + RNaseL Cucumber mosaic virus (CMV) Ogawa et al. 1996 
Pepper Tsi1 (Tobacco) Cucumber mosaic virus (CMV) Shin et al. 2002b 

Enhancement of 
HR/SAR 

Tobacco 2-5Aase + RnaseL Cucumber mosaic virus (CMV) Honda et al. 2003 
Hammerhead ribozyme Tobacco Conserved sequences of RNA1 and 2 

of CMV-Y 
Cucumber mosaic virus (CMV) Kwon et al. 1997 
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Transgenics to combat nematode pathogens 
 
Nematodes are the principal obligate parasites of plants 
causing >$100 billion each year in global agriculture (Chit-
wood 2003). Improved plant resistance to parasitic nema-
todes is highly desirable to reduce the need for nematicides, 
some of which belong to the most unacceptable pesticides 
used in agriculture. Of the several possible approaches 
based on anti-invasion and migration, feeding-cell attenua-
tion and anti-nematode feeding, developing transgenic 
plants with improved nematode resistance is a promising 
one (Atkinson et al. 1995). 

Multiple studies have demonstrated that transgenic ex-
pression of a modified version of oryzacystatin, Oc-1�D86, 
can interfere with nematode replication (Urwin et al. 1995). 
In Arabidopsis thaliana, expression of Oc-1�D86 using the 
cauliflower mosaic virus (CaMV35S) promoter and infec-
tion with the beet cyst nematode (Heterodera schachtii) re-
sulted in adult females that were greatly diminished in size 
relative to controls (Urwin et al. 1997). Similarly, infection 
of transgenic plants with root-knot nematode (Meloidogyne 
incognita) resulted in fewer full size adults (Urwin et al. 
1997). However, using same genes in transformation of 
potato plants and challenged with potato cyst nematode 
(Globodera pallida) in a field trial resulted in a 55-70% de-
crease in cyst number. Though, cysts formed were of nor-
mal size with a similar number of eggs to control, sug-
gesting the potential for escape from digestive disruption. 
Transgenic banana plants expressing Oc-1�D86 from the 
maize ubiquitin gene promoter and challenged with burrow-
ing nematode (Radopholus similes) in greenhouse trials 
identified eight of 115 lines that expressed the protein and 
showed substantial control (Atkinson et al. 2004). 

Bacillus thuringiensis bacteria produce specific toxins 
(Cry proteins) which have shown nematicidal properties 
(Schnepf et al. 2003) and testing of a Bt panel against free-
living nematodes demonstrated the nematicidal activity of 
Cry5B, Cry6A, Cry14A, and Cry21A against various plant 
parasitic nematodes (Wei et al. 2003). Griffitts et al. (2005) 
reported that Cry5B interacts with the luminal surface of the 
C. elegans intestine via an invertebrate-specific glycolipid, 
loss of which conveys resistance, while expression of 
codon-optimized Cry6A in transgenic tomato roots by the 
CaMV35S promoter reduced 56–76% egg production in 

Meloidogyne incognita (Li et al. 2007). 
Plant resistance (R) genes have been the underlying 

basis for successes in breeding efforts generating nematode-
resistant tomato, soybeans, tobacco and other crops with 
pronounced economic benefits (Starr et al. 2002). One clas-
sical example is the tomato Mi 1.2 gene (Milligan et al. 
1998; Vos et al. 1998), which encodes a leucine-rich repeat 
protein and confers resistance to three Meloidogyne species 
as well as aphids and white flies. Mi 1.2 can be transgenic-
ally expressed and provide Meloidogyne resistance in some 
tomato-related plant species (such as eggplant) but not in 
others (Goggin et al. 2006). Mi 1.2 is likely part of a 
surveillance cascade that detects a specific nematode factor 
and triggers localized host cell death where giant-cells 
would normally form near the head of the invading J2 worm. 

Winter et al. (2002) demonstrated that the acetyl-
cholinesterase-blocking nematicide aldicarb interferes with 
H. glycines chemosensation at a 1,000,000-fold lower dose 
(1 picomolar) than was required for inhibition of locomo-
tion, indicating that disruption of chemosensation is likely a 
key feature of aldicarb’s efficacy. Expression of the aldi-
carb-like peptides as secretory products in transgenic potato 
resulted in root exudates with acetylcholinesterase-blocking 
activity, which in greenhouse trials reduced Globodera pal-
lida infection with cyst number declining 36–48% relative 
to vector controls (Liu et al. 2005). Peptide mimics of leva-
misole also reduced Globodera infection in a potato hairy 
root system. Similar results were obtained by Marra et al. 
(2009) who introduced a cysteine proteinase prodomain, 
obtained from Heterodera glycines (HGCP prodomain), 
into soybean cotyledons; there was a significant reduction 
in the soybean cyst nematode population. 

Besides conventional transgenic technology, Mann et al. 
(2008) described the potential application of RNA interfere-
ence as an eco-friendly tool for the management of plant 
parasitic nematodes. Though, the first published demons-
tration of transgenic plants with RNAi-based resistance to 
plant-parasitic nematode infection was reported by Yadav et 
al. (2006) for tobacco challenged with Meloidogyne incog-
nita. Expression of dsRNA for a Meloidogyne splicing fac-
tor protein decreased gall formation and nematode repro-
duction almost entirely. Subsequent demonstration of 
RNAi-based resistance has come from work by Huang et al. 
(2006) for Arabidopsis challenged with M. incognita, M. 

Table 4 (Cont.) 
Mechanism/Strategies 
employed 

Transgenic 
plant 

Source/gene product Virus Reference 

Tomato ScFv antibodies Cucumber mosaic virus (CMV) Villani et al. 2005 
Tobacco ScFv antibodies Cucumber mosaic virus (CMV) Aebig et al. 2006 
Potato ScFv antibodies Potato virus Y (PVY) Gargouri-Bouzid et al. 2006 

Plantibodies 

Tobacco ScFv antibodies Tomato bushy stunt virus (TBSV) Boonrod et al. 2004 

 

Table 5 Transgenic crops engineered for enhanced resistance against nematodes. 
Transgenic crop Gene/gene product Donor Target nematode References 
Tomato Cysteine proteinase 

inhibitor (CeCPI) 
Colocasia esculenta Meloidogyne incognita Chan et al. 2010 

Brinjal cry1Ab Bacillus thuringiensis (Berliner) M. incognita Phap et al. 2010 
Soybean cysteine proteinase (CPs) 

propeptide 
Heterodera glycines H. glycines Marra et al. 2009 

Tomato chi 11 Oryza sativa M. incognita Kalaiarasan et al. 2008
Tomato Cry6A Bacillus thuringiensis (Berliner) Root knot nematode Li et al. 2007 
Tomato CaMi Hot pepper (Capsium annuum L.) Meloidogyne spp. Chen et al. 2007 
Arabidopsis thaliana 16D10 Arabidopsis thaliana M. incognita, M. javanica, M. 

arenaria, and M. hapla 
Huang et al. 2006 

Triticum durum 
(cv. PDW215 ) 

pin2 Potato Heterodera avenae Vishnudasan et al. 2005

Banana Oc-1�D86 Maize Radopholus similis Atkinson et al. 2004 
Pine apple Oc-1�D86 Maize M. incognita Urwin et al. 2000 
A. thaliana protease inhibitors - Rotylenchulus reniformis Urwin et al. 2000 
Rice Oc-1�D86 Maize M. incognita Vain et al. 1998 
Tomato Mi-1 S. peruvianum M. incognita Milligan et al. 1998 
A. thaliana Cystatin, Oc-I delta D86 Rice Heterodera schachtii and M. incognita Urwin et al. 1997 
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javanica, M. arenaria, and M. hapla. Expression of dsRNA 
for a secreted Meloidogyne parasitism gene 16D10 de-
creased eggs per gram of root by 69–93%. Sanghera et al. 
(2010) reviewed the potential exploitation of RNAi in com-
mercial nematode control through transgenic plant-deli-
vered dsRNA. Some examples showing the utilization of 
transgenic technology to develop nematode-tolerant lines in 
different crops are listed in Table 5. 

 
TRANSGENICS FOR AMELIORATION TO ABIOTIC 
STRESS TOLERANCE 
 
Abiotic stresses present a major challenge in our quest for 
sustainable food production, as these may reduce the poten-
tial yields by 70% in crop plants (Katiyar-Agarwal et al. 
2006). Drought and salinity stresses also limit crop produc-
tion even under irrigated conditions (Chinnusamy et al. 
2006). Many bacterial genes involved in different environ-
mental stresses have been identified and engineered. The 
expression of certain bacterial stress-related proteins in 
plants may directly or indirectly protect plants against spe-
cific environmental stresses such as drought, high salinity, 
high UV radiation and low temperature. As the role of dif-
ferent bacterial genes in stress adaptation becomes known, 
genetic transformations strategies have been devised to 
improve abiotic stress tolerance in economically important 
crops and are detailed below. 

 
Transgenics for drought tolerance 
 
Drought is the most significant environmental stress in agri-
culture worldwide and improving yield under drought is a 
major goal of plant breeding (Cattivelli et al. 2008). Never-
theless, direct selection for grain yield under water-stressed 
conditions has been hampered by low heritability, polygenic 
control, epistasis, significant genotype by- environment (G 
× E) interaction and quantitative trait loci (QTLs)-by-envi-
ronment (QTL × E) interaction (Gosal et al. 2009; Ashraf 
2010; Sanghera et al. 2010). In recent years, crop physiol-
ogy and genomics have led to new insights in drought toler-
ance providing plant engineers with new knowledge and 
tools for crop improvement (Tuberosa and Salvi 2006). 
Efforts have been made during the last few decades to gene-
rate transgenic lines of different crops, showing enhanced 
tolerance to drought stress (Table 6). The major emphasis 
of agricultural scientists has been on engineering genes that 
encode compatible organic osmolytes, plant growth regula-
tors, antioxidants, heat-shock and late embryogenesis abun-
dant proteins, and transcription factors involved in gene 
expression (Gosal et al. 2009; Ashraf 2010). 

Compatible organic solutes play a central role in plant 
drought tolerance (Ashraf and Foolad 2007). Overproduc-
tion of such compatible organic osmotica (glycine betain, 
proline, trehalose, etc.) is one of the prominent responses of 
plants exposed to osmotic stress (Serraj and Sinclair 2002) 
and the genes encoding the synthesis of such organic sol-
utes can be engineered to enhance the production of these 
solutes in transgenic plants. Glycine betaine (GB) is a qua-
ternary ammonium compound, known to play a substantial 
role in stress tolerance and accumulated in response to 
dehydration stress with in a plant system (Mansour 2000; 
Mohanty et al. 2002; Yang et al. 2003). The biosynthesis of 
GB in higher plants is controlled by two enzymes viz. cho-
line monooxygenase (CMO) and betaine aldehyde dehydro-
genase (BADH). 

Multiple studies showed genes encoding CMO enzymes 
have been engineered. These transgenic lines showed higher 
accumulation of GB under water limited conditions and 
hence enhanced drought tolerance (Shen et al. 2002; Zhang 
et al. 2008). A potential maize inbred line DH4866 was 
transformed with the E. coli betA gene encoding choline 
dehydrogenase (Quan et al. 2004). The transformed maize 
plants contained higher levels of GB and showed higher 
tolerance to drought as compared to wild-type plants when 
tested at the initial growth stages. 

Like GB, proline is also an important compatible or-
ganic osmolyte that plays a key role in stress tolerance. Pyr-
roline-5-carboxylate synthetase (P5CR) is the key enzyme 
for proline biosynthesis. The gene for this enzyme has been 
engineered in soybean (Ronde et al. 2004), petunia (Yamada 
et al. 2005) and tobacco (Gubis et al. 2007). All these trans-
genic lines showed enhanced accumulation of proline as 
well as high drought tolerance. 

Trehalose, a non-reducing sugar, is also a potential or-
ganic osmoticum which has a substantial role in the pro-
tection of plants against stresses. However, transgenic lines 
of different crops have been generated using the genes of 
some key enzymes involved in trehalose biosynthesis. For 
example, enhanced drought tolerance has been achieved by 
transforming the gene TPS1 for trehalose-6-phosphate syn-
thase in tobacco (Romero et al. 1997; Karim et al. 2007). 
Enhanced drought tolerance has also been observed in 
transformed rice plants expressing chimeric gene Ubi1:: 
TPSP due to increased accumulation of trehalose (Jang et al. 
2003). In these studies and some other reported in the lite-
rature, engineering constitutive over-expression of genes 
encoding TPS and/or TPP (trehalose-6-phosphate phospha-
tase) resulted in enhanced trehalose accumulation as well as 
drought tolerance. However, the main problem with such 
transformation had been that it led to abnormal plant deve-
lopment under normal growth conditions, because the gene 
transformed remained turned on all the time. To resolve this 
problem, Wu and Garg (2003) alternatively adopted another 
way to engineer enhanced trehalose accumulation in such a 
manner that trehalose biosynthesis took place only when the 
plant encountered abiotic stress. They employed a stress-
inducible promoter for the over-expression of E. coli treha-
lose biosynthesis genes (otsA and otsB) as fusion gene 
(TPSP, trehalose-6-phosphate synthase phosphatase) for 
developing abiotic stress tolerance in rice. It is pertinent to 
note here that the TPSP fusion gene transformation resulted 
in normal growth under non-stress conditions, but the ex-
pression of the fusion gene occurred only under stress con-
ditions. In another study, a TPS1–TPS2 fusion gene cons-
truct was incorporated into Arabidopsis thaliana through 
Agrobacterium using either the 35S or the stress regulated 
rd29A promoter (Miranda et al. 2007). The lines over-ex-
pressing the TPS1–TPS2 construct showed normal growth 
as well as enhanced tolerance to multiple stresses such as 
salinity, drought, freezing, and high temperature. Mannitol 
is another important osmo-protectant that plays a vital role 
in plant stress tolerance. However, attempts have been made 
to achieve improved drought tolerance by the over-expres-
sion of mannitol in plants by engineering genes involved in 
the biosynthesis of mannitol. Tobacco plants transformed 
with a mannitol-1-phosphate dehydrogenase gene resulted 
in enhanced mannitol accumulation, but enhanced mannitol 
accumulation did not affect osmotic adjustment or drought 
tolerance in the transformed plants as compared to those in 
the untransformed plants (Karakas et al. 1997). 

Drought stress also leads to increased accumulation of 
reactive oxygen species (ROS) in plants thus causing an 
oxidative stress. To counteract these ROS, plants can intrin-
sically develop different types of antioxidants (Pastori and 
Foyer 2002; Sunkar et al 2006). Genes encoding different 
types of antioxidants have been engineered in different 
plants for achieving enhanced drought tolerance. For exam-
ple, engineering of the gene SOD encoding superoxide dis-
mutase caused enhanced drought tolerance in potato (Perl et 
al. 1993), alfalfa (McKersie et al. 1997) and rice (Wang et 
al. 2005). Transgenic lines of tobacco produced by over-
expressing the monodehydroascorbate reductase (MDAR) 
gene from Arabidopsis showed a 2.1-fold higher MDAR 
activity and 2.2-fold higher level of reduced ascorbic acid 
than that in non-transformed plants (Eltayeb et al. 2007). 
Further, Liu et al. (2008) generated transgenic tobacco 
plants over-expressing VTE1 gene encoding tocopherol cyc-
lase (VTE1), a key enzyme of tocopherol biosynthesis. The 
transformed plants exhibited enhanced drought tolerance 
which was associated with decreased electrolyte leakage, 
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Table 6 Drought tolerance transgenic plants expressing genes involved organic osmolytes, transcription factors, late embryogenesis proteins and hormones.
Transgenic crop Gene Gene product Donor Remarks Reference
Cotton AVP1 Vacuolar 

pyrophosphatase 
Arabidopsis 20% higher fibre yield of AVP1-expressing cotton plants, 

improved tolerance to both drought and salt stresses 
Pasapula et 
al. 2010 

Tomato (Lycopersicon 
esculentum L.) 

SINAGS1 N-acetyl-glutamate 
synthase 

Arabidopsis 
thaliana L. 

Improved germination ability and higher accumulation of 
ornithine 

Kalamaki et 
al. 2009 

Tobacco (Nicotiana 
tabacum L.) 

BhLEA1 
and 
BhLEA2 

Boea hygrometrica 
late embryogenesis 
abundant proteins 

Boea 
hygrometrica 

The relative water content of leaves and activities of 
photosystem II, superoxide dismutase and peroxidase 
increased, while membrane permeability decreased in 
transgenic plants 

Liu et al. 
2009 

Rice (Oryza sativa L.) OsRACK1 Receptor for activated 
C-kinase 1 

Rice (Oryza 
sativa L. subsp. 
Japonica cv. 
Nipponbare 

Reduced membrane peroxidation and production of 
malondialdehyde, while enhanced activity of superoxide 
dismutase in transgenic rice plants, RACK1 negatively 
regulated the redox system-related tolerance to drought 
stress 

Li et al. 
2009 

Rice (Oryza sativa L.) TaSTRG Triticum aestivum salt 
tolerance gene 

Triticum 
aestivum L. 

Improved plant survival rate, fresh weight, chlorophyll 
content, higher praline, and soluble sugar contents, and 
significantly higher expression of putative praline 
synthetase and transporter genes than the non-transgenic 
plants 

Zhou et al. 
2009 

Rice (Oryza sativa L.) AP37 and 
OsCc1 

Transcription factor 
(encoding Oryza 
sativa cytochrome c 
gene 

Rice (Oryza 
sativa L.) 

Improved grain filling rate and grain yield (16-57%) and 
drought tolerance of transgenic plants 

Oh et al. 
2009 

Arabidopsis thaliana 
L. 

MYB15 R2R3 MYB 
transcription factor 

Arabidopsis 
thaliana L. 

Transgenic lines were hypersensitive to ABA in 
germination assays, more susceptible to ABA-elicited 
inhibition of root elongation, and more sensitive to ABA-
induced stomatal closure. The transcript levels of ABA 
biosynthesis, signaling and responsive genes were 
generally higher in the seedlings of transgenic plants than 
those in wild types 

Ding et al. 
2009 

Peanut (Arachis 
hypogea L.) 

AtDREB1
A 

Arabidopsis thaliana 
dehydration-
responsive element-
binding protein 

Arabidopsis 
thaliana L. 

Enhanced activities of superoxide dismutase, ascorbate 
peroxidase, and glutathione reductase and enhanced 
praline level in the transgenic plants, while a dramatic 
increase in the lipid peroxidation was observed in the 
untransformed controls under water limited conditions 

Bhatnagar-
Mathur et al. 
2009 

Tobacco (Nicotiana 
tabacum L.) 

BvCMO Choline 
monooxygenase 

Beet (Beta 
vulgaris) 

Higher accumulation of glycinebetaine in leaves, roots and 
seeds. Transgenic line exhibited improved tolerance to 
toxic level of choline and drought and stress  

Zhang et al. 
2008 

Tobacco (Nicotiana 
tabacum L.) 

VTE1 Tocopherol cyclase Arabidopsis 
thaliana L. 

Lower lipid peroxidation, electrolyte leakage and H2O2 
content, while higher chlorophyll and tocopherol contents 
in transgenic plants as compared to wild type 

Liu et al. 
2008 

Mulberry (Morus 
indica) 

HVA1 Late embryogenesis 
abundant protein 

Barley (Hordeum 
vulgare L.) 

The transgenic plants showed better memebrane stability 
(CMS), photosynthetic yield, less photo-oxidative damage 
and better water use efficiency under drought stress 

Lal et al. 
2008 

Tobacco (Nicotiana 
tabacum L.) 

Ta-Ub2 Triticum aestivum 
ubiquitin 2 

Wheat (Triticum 
aestivum L.) 

Faster germination, seedlings grew vigorously under water 
deficit conditions, improved CO2 assimilation rate of 
transgenic plants both under drought and non-drought 
conditions 

Guo et al. 
2008 

Tobacco (Nicotiana 
tabacum L.) 

P5CSF129
A and nptII 

??-pyrroline-5-
carboxylate synthetase 
and neomycine 
phosphotransferase 

Vigna acontifolia Transgenic plants accumulated high levels of praline and 
chlorophyll content and were better adapted to water stress

Gubis et al. 
2007 

Tobacco (Nicotiana 
tabacum L.) 

TPS1 and 
TPS2 

Trehalose-6-phosphate 
synthase 1 and 2 

Saccharomyces 
cerevisiae 

Enhanced drought tolerance by water retention and root 
development 

Karim et al. 
2007 

Triticum aestivum L. 
cv. CD200126 

P5CS Pyrroline-5- 
carboxylate synthetase 

Vigna acontifolia Improved drought tolerance was mainly due to protection 
against oxidative stress; praline accumulation was high in 
transgenic plants 

Vendruscolo 
et al. 2007 

Tall fescue (Festuca 
arundinacea Schreb.) 

DREB1A/
CBF3 

Dehydration-
responsive element-
binding protein 

Arabidopsis 
thaliana L. 

Transgenic plants showed increased resistance to drought 
and high praline accumulation 

Zhao et al. 
2007 

Arabidopsis thaliana 
L. 

CaXTH3 Capsicum annuum 
xyloglucan 
endotransglucosylase/
hydrolase 

Pepper 
(Capsicum 
annuum L. cv. 
Pukang) 

Transgenic plants exhibited abnormal leaf morphology, 
showed variable twisting and bending along the edges, 
resulting in a severely wrinkled leaf shape resulting into a 
marked improvement in tolerance to severe water deficit 
conditions 

Cho and 
Hong 2006

Rice (Oryza sativa L.) Mn-SOD Manganese 
superoxide dismutase 

Pea (Pisum 
sativum L.) 

Reduced electrolyte leakage, injury, oxidative damage, 
while improved photosynthetic rate, SOD activity and 
drought tolerance 

Wang et al. 
2005 

Arabidopsis thaliana 
L. and Oryza sativa L. 

AtP5CS or 
OsP5CS 

Pyrroline-5- 
carboxylate synthetase 

Petunia (Petunia 
hybrida cv. 
Mitchell 

Transgenic plants accumulated 1.5-2.6 times greater 
praline and showed better growth than wild type plants 
under drought stress 

Yamada et 
al. 2005 

Tobacco (Nicotiana 
tabacum L.) 

PsTP Pleurotus sajor-caju 
trehalose 
phosphorylase 

Pleurotus sajor- 
caju 

Transgenic plants showed normal growth, and better 
capacity to retain water, while the wild type and the only 
empty vector-transformed control withered severely 

Han et al. 
2005 
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lipid peroxidation and H2O2 content, but increased chloro-
phyll content compared with the non-transformed plants. 

Late embryogenesis abundant (LEA) proteins play a 
vital role in plant protection against the adverse effects 
caused by drought stress (Hong et al. 2005; Gosal et al. 
2009). Efforts have been made during the last two decades 
to engineer LEA genes for enhanced plant drought tolerance. 
For example, engineering the LEA genes PMA1959 and 
PMA80 from wheat and transformed in rice resulted in 
enhanced drought tolerance (Cheng et al. 2002). Similarly, 
a LEA gene HVA1 from barley was engineered in rice (Xu 
et al. 1996), and wheat (Sivamani et al. 2000). Both rice 
and wheat transformed lines so produced showed enhanced 
tolerance to drought stress. In two independent studies, a 
LEA protein gene ME-lea N4 from Brassica napus was 
transferred through Agrobacterium to lettuce (Lactuca 
sativa L.) (Park et al. 2005a) and Chinese cabbage (Bras-
sica campestris Pekinensis) (Park et al. 2005b) using the 
CaMV 35S promoter. The transgenic lines of both crops 
showed enhanced tolerance to drought. Another LEA pro-
tein gene OsLEA 3-1 has been incorporated into rice via 
Agrobacterium under the operation of different promoters 
(Xiao et al. 2007). The rice transgenics developed particu-
larly under the control of constitutive CaMV 35S and 
stress-inducible HVA1 promoters showed enhanced drought 
tolerance when tested under natural field conditions. 

Jeanneau et al. (2002) examined the role of an ABA and 
drought regulated maize gene ASR1 coding for an ABA 
stress ripening protein, and the effect of photosynthesis 
regulation through the ectopic expression of the S. bicolor 

C4-phosphoenolpyruvate carboxylase gene, C4-PEPC, in 
transgenic maize. The transgenic maize lines so produced 
showed enhanced photosynthetic capacity, water use effici-
ency as well as high biomass production under mild water 
deficit conditions. Transgenic expression of MYB15, en-
coding a transcription factor, R2R3 MYB, in Arabidopsis, 
showed considerable sensitivity to exogenous ABA and en-
hanced tolerance to drought (Ding et al. 2009). 

Transcription factors are specific types of proteins that 
bind DNA and are involved in the regulation of gene trans-
cription, hence gene regulation. Several transcription fac-
tors have been identified, which are involved in gene regu-
lation in plants under water limited conditions (Bartels and 
Sunkar 2005; Vinocur and Altman 2005). Of a number of 
transcription factors listed elsewhere (Gosal et al. 2009), 
dehydration-responsive element-binding factors (DREB) 
have attracted the attention of many plant reseachers since 
Jaglo-Ottosen et al. (1998) and Liu et al. (1998) first repor-
ted the up-regulation of many genes in DREB1/CBF trans-
genic Arabidopsis involved in tolerance to a variety of 
stresses. Transgenic Arabidopsis plants over-expressing 
DREB1/CBF3 operated by the constitutive promoter CaMV 
35S also exhibited improved tolerance to drought (Kasuga 
et al. 1999). Introduction of DREB1A into wheat driven by 
rd29A promoter resulted in enhanced drought tolerance 
(Pellegrineschi et al. 2004). Ecotypic expression of Arab-
idopsis DREB1A/(CBF3) into transformed rice plants under 
the operation of constitutive promoter CaMV 35S, resulted 
in improved tolerance to drought (Oh et al. 2005). In maize, 
over-expression of ZmDREB2A under the control of consti-

Table 6 (Cont.) 
Transgenic crop Gene Gene product Donor Remarks Reference
Arabidopsis thaliana 
L. 

AREB1 Abscisic acid-
responsive element-
binding protein 1 

Escherichia coli AREB1 regulated novel ABRE-dependent ABA signaling 
that enhanced drought tolerance in vegetative tissues 

Fujita et al. 
2005 

Soybean (Gycine max 
cv. Ibis) 

P5CR Pyrroline-5-
carboxylate reductase 

Arabidopsis 
thaliana L. 

NADP+ levels decreased in wild type/ antisense, while 
increased in transgenic/sense plants. Sense plants 
accumulated highest amount of praline 

Ronde et al. 
2004 

Zea mays L. inbred 
line DH4866 

betA Choline 
dehydrogenase 

Escherichia coli Higher accumulation of glycinebetaine, more tolerant to 
drought stress at germination stage and the young seedling 
stage. Most importantly, improved grain yield, integrity of 
the cell membrane and activities of enzymes under 
drought stress 

Quan et al. 
2004 

Nicotiana tabacum L. 
cv. SR-1 

APX5 Ascorbate peroxidase Arabidopsis 
thaliana L. 

Enhanced net photosynthetic rate, 3.8 fold higher level of 
APX activity, while reduced toxicity of H2O2 in transgenic 
plants 

Badawi et 
al. 2004 

Rice (Oryza sativa L.) TPSP 
(fusion 
gene of 
otsA and 
otsB) 

Trehalose-6-phosphate 
synthase or 
phosphatase 

Escherichia coli The genetically-engineered rice plants produced higher 
amounts of trehalose, exhibited sustained plant growth, 
less photo-oxidative damage, and more favorable mineral 
balance under drought stress conditions 

Wu and 
Garg 2003 

Wheat (Triticum 
aestivum L.) 

mt1D Mannitol-1-phosphate 
dehyrogenase 

Escherichia coli Improved fresh and dry weights, plant height, and flag leaf 
length in transgenic plants 

Abebe et al. 
2003 

Tobacco (Nicotiana 
tabacum L.) 

AhCMO Choline 
monooxygenase 

Atriplex hortensis Improved drought tolerance by accumulating higher 
amount of glycinebetaine 

Shen et al. 
2002 

Zea mays zm-Asr1 Zea mays ABA/ water 
stress/ ripening 
induced protein 

Sorghum 
(Sorghum 
bicolor) 

Transgenic plants showed increased intrinsic water use 
efficiency accompanied by a dry weight increase under 
drought conditions 

Jeaneau et 
al. 2002 

Ryegrass (Lolium 
multiforum Lam.) 

sacB Bacillus subtilis 
chimeric gene 

 Bacillus subtilis Transgenic plants had a lower level of total fructose, 
unchanged sucrose levels and a slight reduction in hexose 
levels. However, growth of the levan-accumulating sacB- 
transgenic plants was decreased with the onset of 
reproductive phase 

Ye et al. 
2001 

Arabidopsis thaliana 
L. 

 Ssuperoxide 
dismutase and 
Ascorbate peroxidase  

Alfalfa 
(Medicago sativa 
L.) 

Improved seed germination, plant growth, osmotic 
adjustment, and activities of superoxide dismutase and 
ascorbate peroxidase 

Luo et al. 
2000 

Tobacco (Nicotiana 
tabacum L.) 

mt1D Mannitol-1-phosphate 
dehyrogenase 

Escherichia coli  Karakas et 
al. 1997 

Tobacco (Nicotiana 
tabacum L.) 

TPS1 Trehalose-6-phosphate 
synthase 

Escherichia coli Trehalose accumulating plants exhibited multiple 
phenotypic alterations including stunted growth, lancet-
shaped leaves, reduced sucrose content and improved 
drought tolerance 

Romero et 
al. 1997 
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tutive or stress-inducible promoter resulted in enhanced 
drought tolerance in plants (Qin et al. 2007). Bhatnagar-
Mathur et al. (2009) generated transgenic plants of peanut 
over-expressing Arabidopsis AtDREB1A, driven by a stress-
inducible promoter, Atrd29A. 

Apart from DREB, other transcription factors are also 
known to be involved in plant stress responses. One such 
type is that with APETELA2 (AP2)-domain. Oh et al. 
(2009) identified 42AP2 genes in rice, which are triggered 
by various stresses including salinity, drought, freezing, and 
ABA. The transformed rice plants over-expressing AP37 
and AP59 under the operation of the constitutive promoter 
OsCc1 showed enhanced resistance to high drought at the 
vegetative growth stage. However, compared to OsCc1: 
AP59 plants, OsCc1:AP37 plants showed considerably 
higher tolerance to drought by producing 16–57% more 
grain yield than non-transgenic controls under severe 
drought conditions of the field. Recently, Jeong et al. 
(2010) reported the results of a functional genomics ap-
proach that identified a rice NAC (an acronym for NAM [No 
Apical Meristem], ATAF1-2, and CUC2 [Cup-Shaped 
Cotyledon]) domain gene, OsNAC10, which improved per-
formance of transgenic rice plants under field drought 

conditions. Overexpression of OsNAC10 in rice under the 
control of the constitutive promoter GOS2 and the root-
specific promoter RCc3 increased the plant tolerance to 
drought, high salinity, and low temperature at the vegetative 
stage. More importantly, the RCc3:OsNAC10 plants showed 
significantly enhanced drought tolerance at the reproductive 

stage, increasing grain yield by 25 to 42% and by 5 to 14% 

over controls in the field under drought and normal condi-
tions, respectively. 

Wei et al. (2010) reported that maize plants transgenic 
for both betA (encoding choline dehydrogenase from Esche-
richia coli) and TsVP (encoding V-H+-PPase from Thellun-
giella halophila) were produced by cross-pollination. The 
existence of the transgenes in the pyramided plants was 
demonstrated by PCR and Southern blotting. The examina-
tion of the drought resistance characteristics demonstrated 
that the pyramided transgenic plants had higher glycine-
betaine contents and H+-PPase activity compared with the 
parental lines, which had either betA or TsVP, and contained 
higher relative water content (RWC), greater solute ac-
cumulation and lower cell damage under drought stress 
treatment. The pyramided plants grew more vigorously with 
less growth retardation, shorter anthesis-silking interval and 
higher yields than their parental lines and the wild-type. 
However, most of the transgenic lines of different crops 
were tested under controlled laboratory or glasshouse con-
ditions in which remarkable performance under simulated 
stress conditions were shown. Most drought-tolerant trans-
genic lines of different crops developed are based on only a 
single gene transformation (Table 6), and where the claims 
of the authors regarding the performance of the lines with 
respect to drought tolerance seems to be overstated, al-
though manipulation of a number of genes predominantly 
involved in drought tolerance to transgenic plants seems to 
be a plausible approach that allows pyramiding of desirable 
traits to achieve considerable advance in crop drought toler-
ance. 

 
Transgenics for salt tolerance 
 
It is estimated that 20% of the irrigated land in the world is 
presently affected by salinity (Yamaguchi and Blumwald 
2005; Ruan et al. 2010; Ruan and Teixeira da Silva 2011). 
Salinity imposes water deficit that results from the rela-
tively high solute concentra-tion in the soil, causes ion spe-
cific stresses resulting from altered Na+/K+ ratios, and leads 
to buildup in Na+ and Cl� concentrations that are detri-
mental to growth and other life processes of plants (Vinocur 
and Altman 2005). Plant sys-tems respond to salt stress by 
restricting the uptake of salt and adjust their osmotic pres-
sure by the synthesis of com-patible solutes (proline, gly-
cinebetaine, sugars) (Greenway and Munns 1980) and 

sequestering salt into the cell vacuoles for the maintenance 
of low cytosolic Na+ levels (Blumwald and Grover 2006). 
Transgenics that have shown a comparable level of salt tol-
erance to their wild types and are presented in Table 7. 

Salt tolerance of transgenic tobacco engineered to over 
accumulate mannitol was first demonstrated by Tarczynski 
et al. (1993). The other examples of compatible solute 
genetic engineering includes the transformation of genes for 
ectoine synthesis with enzymes from the halophilic bacte-
rium Halomonas elongata (Ono et al. 1999; Nakayama et al. 
2000) and trehalose synthesis in potato (Yeo et al. 2000), 
rice (Garg et al. 2002), and sorbitol synthesis in plantago 
(Plantago ovata L.) (Pommerrenig et al. 2007). 

Initial strategies aimed at engineering higher concentra-
tions of proline began with the overexpression of genes en-
coding the enzymes pyrroline-5-carboxylate (P5C) synthe-
tase (P5CS) and P5C reductase (P5CR). P5CS overexpres-
sion in transgenic tobacco dramatically elevated free proline 
(Kishor et al. 1995). 

Hayashi et al. (1997) used choline oxidase of Arthro-
bacter globiformis to engineer glycinebetaine syn thesis in 
Arabidopsis and subsequently tolerance to salinity during 
germination and seedling establishment was improved mar-
kedly in the transgenic lines. The enhancement of glycine-
betaine syntheses in target plants has received much atten-
tion (Rontein et al. 2002). Huang et al. (2000) used COX 
from Arthobacter panescens, which is homologous to the A. 
globiformis COD, to transform Arabidopsis, B. napus and 
tobacco. In this set of experiments COX protein was di-
rected to the cytoplasm and not to the chloroplast. Improve-
ments in tolerance to salinity, drought and freezing were 
observed in some transgenics from all three species, but the 
tolerance was variable. The results offered the possibility 
that the protection offered by glycinebetaine is not only 
osmotic but also function as scavengers of oxygen radicals. 

Plants use antioxidants such reduced glutathione (GSH) 
and different enzymes such as superoxide dismutases 
(SOD), CAT, APX, glutathione-S-transferases (GST) and 
glutathione peroxidases (GPX) to scavenge ROS. Reduction 
of oxidative damage could provide enhanced plant resis-
tance to salt stress. Transgenic tobacco plants overexpres-
sing both GST and GPX showed improved seed germina-
tion and seedling growth under stress (Roxas et al. 1997). 
However, Xu et al. (1996) generated transgenic rice (cv. 
‘Nipponbare’) over-expressing barley hva1 gene encoding 
LEA protein and reported that the transgenic plants main-
tained a higher growth rate initially and showed better reco-
very on removal of salt stress. Further, Sakamoto et al. 
(1998) genetically engineered rice with the ability to syn-
thesize GB by introducing the codA gene (encoding for cho-
line oxidase obtained from Arthrobacter globiformis) and 
found that levels of GB were as high as 1 and 5 �mol per 
gram fresh weight of leaves in two types of transgenic plant 
in which choline oxidase was targeted to the chloroplasts 
(ChlCOD plants) and to the cytosol (CytCOD plants), res-
pectively. 

Saijo et al. (2000) generated transgenic rice (cv. ‘Noto-
hikari’) plants over-expressing a Ca2+-dependent protein 
kinase (OsCDPK7). The youngest leaves wilted 3 days after 
salt stress of 200 mM NaCl in wild type plants, while trans-
genic plants exhibited greater tolerance. Mohanty et al. 
(2002) generated transgenic lines of indica rice Pusa bas-
mati 1 (PB 1) by Agrobacterium-mediated transformation 
with codA gene. In this work, more than 50% of the trans-
genic plants could survive salt stress and set seed whereas 
the wild type plants failed to recover. Garg et al. (2002) 
generated transgenic indica rice PB 1, expressing the fusion 
gene comprising both trehalose-6-phosphate synthase and 
trehalose-6-phosphate phosphatase obtained from Escheri-
chia coli. Compared to wild type rice, transgenic lines ex-
hibited sustained plant growth, less photo-oxidative damage, 
and more favorable mineral balance under salt stress condi-
tions. Jang et al. (2003) reported the generation of treha-
lose-producing, transgenic japonica rice plants by the intro-
duction of a gene encoding a bifunctional fusion (TPSP) of 
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Table 7 Salt tolerant transgenic plants expressing genes involved in synthesis/over expression of ion transporters and compatible solutes. 
Transgenic crop 
(Cultivar) 

Gene Gene product Donor Remark Reference 

Cotton AVP1 Vacuolar pyrophosphatase Arabidopsis 20% higher fibre yield of AVP1-expressing 
cotton plants, improved tolerance to both 
drought and salt stresses 

Pasapula et al. 
2010 

Poplar (Populus 
davidiana X P. 
bolleana) 

TaMnSOD Superoxide dismutases Tamarix androssowii 1.3–4-folds enhacement in SOD activity in 
transgenic plants, 8- to 23-fold increase in 
relative weight gains of the transgenic plants 

Wang et al. 2010 

Tobacco PcINO1 
and 
McIMT1 

Myo-inositol 1-phosphate 
synthase and inositol 
methyl transferase 

Porteresia coarctata 
and 
Mesembryanthemum 
crystallinum 

Elevated level of total inositol and methylated 
inositol and the capability of the double 
transgenic plants to withstand a higher degree of 
salt stress 

Patra et al. 2010 

Tobacco W6 Ethylene responsive factor Wheat (Triticum 
aestivum L.) 
landrace Xiaobaimai

Enhancement in superoxide dismutase activity 
and chlorophyll content in the transgenic plants 

Lu et al. 2008 

Rice (Cv. Pusa 
Basmati-1) 

- Cytosolic copper/zinc 
superoxide dismutase 

Avicennia marina Enhacement in SOD activity in transgenic plants Prashanth et al. 
2008 

Plantago major PmSDH1 Sorbitol dehydrogenase Plantago major Transgenic plants showed increased tolerance to 
salt stress 

Pommerrenig et al.
2007 

A. thaliana AtNHX1 Vacuoloar Na+/H+ 
antiporter 

Festuca arundinacea Transgenic plants showed increased tolerance to 
salt stress as a result of Na+ sequestration 

Luming et al. 2006

Rice (Zhonghua 
no. 11) 

SOD2 Vacoular Na+/H+ antiporter Saccharomyces 
pombe 

Transgenics had enhanced P-ATPase hydrolytic 
activity, increased photosynthesis and root 
proton exportation capacity, reduced ROS 
generation 

Zhao et al. 2006a

Rice (Zhonghua 
no. 11) 

SsNHX1 Na+/H+ antiporter Suaeda salsa Transgenic plants increase salt stress resistance, 
which resulted from Na+ sequestration; plants 
had an increase in H+-ATPase and H+-PPase 
activity, reduced ROS generation and increased 
photosynthesis 

Zhao et al. 2006b

Rice (Zhongzou 
321) 

nhaA Na+/H+ antiporter gene Escherichia coli Transgenics grew faster as compared to the wild 
types under stress conditions 

Wu et al. 2005 

Tobacco HbNHX1 Vacoular Na+/H+ antiporter Hordeum 
brevisubculatum 

Transgenic plants showed increased tolerance to 
salt stress 

Lu et al. 2005 

Rice (Nipponbare) OsNHX1 Na+/H+ antiporter Oryza sativa Transgenic plants showed increased tolerance to 
salt stress 

Fukuda et al. 2004

Rice TPS + 
TPP 
fusion 

Trehalose-6- phosphate 
synthase and T-6-P 
phosphatase 

Escherichia coli Trehalose levels in seeds and leaves were more 
in putative transgenic than control plants 

Jang et al. 2003 

Arabidopsis AtSOS1 Plasma membrane Na+/H+ 

antiporter 
Arabidopsis Transgenic plants showed increased tolerance to 

salt stress due to Na+ extrusion 
Shi et al. 2003 

Arabidopsis SOD2 Plasma membrane Na+/H+ 

antiporter 
Schizosaccharomy-
ces pombe 

Transgenic plants showed increased tolerance to 
salt stress due to Na+ extrusion 

Gao et al. 2003 

Rice (Kinuhikari) AgNHX1 Na+/H+ antiporter gene Atriplex gmelini Transgenic plants survived under conditions of 
300 mM NaCl for 3 days 

Ohta et al. 2002 

Rice (PB 1) codA Choline oxidase A Arthrobacter 
globiformis 

50% R1 plants survived after exposure to salt 
stress for 1 week 

Mohanty et al. 
2002 

Rice (PB1) otsA + 
otsB 
(TPSP) 

Trehalose-6-phosphate 
synthase and trehalose-6- 
phosphate phosphatase 

Escherichia coli Transgenic plants showed enhanced tolerance 
both during and after stress and had longer and 
thicker roots 

Garg et al. 2002 

Tomato BADH Betaine dehydrogenase Atriplex hortensis Transgenic plants showed increased tolerance to 
salt stress 

Jia et al. 2002 

Tomato AtNHX1 Vacoular Na+/H+ antiporter Arabidopsis Transgenic plants showed increased tolerance to 
salt stress 

Zhang and 
Blumwald 2001 

Brassica napus AtNHX1 Vacoular Na+/H+ antiporter Arabidopsis Transgenic plants showed increased tolerance to 
salt stress 

Zhang et al. 2001

Japanese 
permission 

Stpd1 Sorbitol-6-phosphate 
dehydrogenase 

Apple Transgenic plants showed increased tolerance to 
salt stress 

Gao et al. 2001 

Arabidopsis AVP1 Vacuolar H+-pyro-
phosphatase 

Arabidopsis Transgenic plants showed increased tolerance to 
salt stress due to vacuolar acidification 

Gaxiola et al. 2001

Tobacco betA Choline dehyrogenase E. coli Transgenic plants exhibited greater salt tolerance Holmstrom et al. 
2000 

Rice (Kinuhikari) c-GS2 Chloroplastic glutamine 
synthetase 

Oryza sativa over-expression reduced the increase of Na+ 
content at high salinity 

Hoshida et al. 2000

Tobacco EctA L-2,4-diaminobutyric acid 
acetyltransferase 

Halomonas elongata Transgenic plants exhibited greater salt tolerance Nakayana et al. 
2000 

Rice (Notohikari) Oscdpk7 Calcium-dependent 
protein kinase 

Oryza sativa Transgenic plants exhibited greater salt tolerance Saijo et al. 2000 

Arabidopsis ProDH Proline hydrogenase Arabidopsis thaliana Transgenic plants exhibited greater salt tolerance Nanjo et al. 1999
Rice (Sasanishiki) Mn-SOD Superoxide dismutase Saccharomyces 

cerevisiae 
Transgenics showed enhanced tolerance to salt Tanaka et al. 1999

Arabidopsis AtNHX1 Vacoular Na+/H+ antiporter Arabidopsis Transgenic plants showed increased tolerance to 
salt stress 

Apse et al.1999 
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the trehalose-6-phosphate (T-6-P) synthase (TPS) and T-6-P 
phosphatase (TPP) of E. coli, under the control of the maize 
ubiquitin promoter. Increased trehalose accumulation in 
transgenic plants resulted in increased tolerance to salt. 

Considering that mechanisms that reduce cytosolic Na+ 
concentrations could provide a degree of tolerance to rela-
tively low NaCl concentrations (Blumwald and Grover 
2006). Ohta et al. (2002) engineered salt sensitive rice cul-
tivar Kinhuikari using the Na+/H+ antiporter gene from 
Atriplex gmelini (AgNHX1). The activity of the vacuolar-
type Na+/H+ antiporter in the transgenic rice plants was 8-
fold higher than in wild type rice plants. Salt tolerance 
assays followed by non-stress treatments showed that the 
transgenic plants over-expressing AgNHX1 could survive 
under conditions of 300 mM NaCl for 3 days while the wild 
type plants could not. Zhao and Zhang (2006) generated 
transgenic rice plants with SsNHX1 from Suaeda salsa 
which showed markedly enhanced tolerance to salt stress 
compared with non transgenic controls grown under out-
door conditions. Yanga et al. (2009) produced six different 
transgenic Arabidopsis plants that overexpress AtNHX1, 
SOS3, AtNHX1+SOS3, SOS1, SOS2+SOS3, or SOS1+SOS2 
+SOS3. Northern blot analyses confirmed the presence of 
high levels of the relevant gene transcripts in transgenic 
plants and reported that transgenic Arabidopsis plants over-
expressing AtNHX1 alone did not present any significant 
increase in salt tolerance, contrary to earlier reports. How-
ever, transgenic plants overexpressing SOS3 exhibit in-
creased salt tolerance similar to plants overexpressing SOS1. 

Recenly, Patra et al. (2010) reported that co-expression 
of PcINO1 (L-myo-inositol 1-phosphate synthase or MIPS 
coding gene from the wild halophytic rice, Porteresia co-
arctata) or McIMTI (inositol methyl transferase, IMTI 
coding gene from common ice plant Mesembryanthemum 
crystallinum) gene in transgenic tobacco plants either in 
cytosol or in chloroplasts accumulate higher amount of total 
inositol (free and methyl inositol) compared to non-trans-
genic plants. These transgenic plants were more competent 
in terms of growth potential and photosynthetic activity and 
were less prone to oxidative stress under salt stress. A posi-
tive correlation between the elevated level of total inositol 
and methylated inositol and the capability of the double 
transgenic plants to withstand a higher degree of salt stress 
compared to the plants expressing either PcINO1 or 
McIMT1 alone. Addionally, Kim et al. (2010) reported that 
overexpression of AtABCG36 improves drought and salt 
stress resistance in transgenic Arabidopsis and produced 
higher shoot biomass and less chlorotic leaves than the wild 
type. 

 
TRANSGENICS FOR HERBICIDE RESISTANCE 
 
The use of herbicides to reduce loss in crop yield due to 
weed competition has become an integral componenet of 
modern agriculture. Developments in plant genetic engi-
neering and knowledge of biochemical action of herbicides 
on plants spurred innovative approaches to engineer crops 
to withstand herbicides. These strategies usually involve 
isolation and introduction of a gene from other organisms, 
mostly bacteria, which is able to overcome the herbicide-
induced metabolic blockage (Kim et al. 1999). A number of 

other genes have been identified that can alleviate the herbi-
cide action through various ways (such as detoxification, 
sequestration, etc.) and thus confer resistance to the plants 
carrying them. Thus genetic engineering technology has 
made it possible to tailor crop varieties to resist specific 
herbicides by introducing relevant genes (Padgette et al. 
1995). Consequently, the range of selective herbicides has 
now greatly expanded, wherein specific genotypes and vari-
eties can confer resistance rather than generic crops display-
ing resistance to specific herbicides. 

Over the last two decades, extensive efforts were put 
into generating glyphosate-resistant crops, culminating in 
the use of the CP4 gene from Agrobacterium spp., which 
encodes a glyphosate-resistant form of 5-enolpyruvyl-shiki-
mate-3-phosphate synthase (EPSPS) (Padgette et al. 1996). 
All commercial glyphosate-resistant crops except some 
maize varieties contain this gene. Glyphosate-resistant can-
ola also contains a gene that encodes a glyphosate oxido-
reductase (GOX) from the microbe Achrobactrum anthropi 
(strain LBAA). This enzyme degrades glyphosate to glyo-
xylate, a ubiquitous and safe natural product, and amino-
methylphosphonate (AMPA), a non-toxic compound. How-
ever, accumulation of AMPA in glyphosate-resistant soy-
beans has been correlated with mild phytotoxicity to the 
crop (Reddy et al 2004). 

One of the first selectable transformation marker genes 
was the bar gene from Streptomyces hygroscopicus, the 
same organism that produces phosphinothricin, the natural 
form of glufosinate. This gene makes plants resistant to 
glufosinate by inactivating this herbicide through acylation 
(Thompson et al. 1987; Lydon and Duke 1999). To date, 
only five transgenes have been used in commercial crops to 
confer resistance to herbicides: CP4, GOX and the mutated 
maize EPSPS for glyphosate resistance, the gene encoding a 
nitrilase for bromoxynil resistance, and the bar gene for 
glufosinate resistance (Duke 2005). 

  
FIELD TRIALS: SUCCESSES AND FAILURES 
 
Data from the biotech industry suggest that since wide-scale 
planting started in 1996, the area of transgenic crops grown 
globally has increased from 2 to 134 Mha in 2009 (James 
2009), of which 131 Mha are grown in eight countries: 
USA, Brazil, Argentina, India, Canada, China, Paraguay 
and South Africa. The release of the first transgenic events 
with insect resistance (Bt) (Bates et al. 2005) was not engi-
neered to increase yield directly, but experience has shown 
that, by reducing losses from pests these varieties have in 
many cases delivered increased yields when compared with 
conventional crops. For Bt cotton, Fernandez-Cornejo and 
Caswell (2006) reported that the increases in cotton yields 
in the Southeast United States were associated with the 
adoption of HT and Bt cotton in 1997. The same authors 
quote a 2001 US government survey data showing that 
maize yield was 9% higher for Bt maize than for conven-
tional maize. Gianessi (2008) reported the outcome of a 
study in Mississippi over 3 years, in which Bt cotton pro-
duced higher lint yields and had an economic advantage 
when compared with conventional cotton varieties. In 
China, Bt cotton was first approved in 1997 and by 2004 
accounted for 69% of cotton grown in China, with 100% 

Table 7 (Cont.) 
Transgenic crop 
(Cultivar) 

Gene Gene product Donor Remark Reference 

Rice (Nipponbare) ch-codA, 
cycodA 

Choline oxidase A Arthrobacter 
globiformis 

Transgenic plants had high levels of glycine 
betaine and grew faster compared to wild types 
on removal of stress 

Sakamoto et al. 
1998 

Arabidopsis COX Choline oxidase Arthrobacter 
globiformis 

Transgenics showed enhanced tolerance to salt Hayashi et al. 1997

Rice (Nipponbare) hva 1 LEA protein Hordeum vulgare Transgenic seedlings maintained a higher 
growth rate during stress and plants showed 
faster recovery on removal of stress 

Xu et al. 1996 
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adoption in Shandong province, where pest pressure was 
greatest (James 2008). Approval came later in India, in 
2002, but as early as 2006, India’s Bt cotton area exceeded 
that of China, and in 2008 accounted for 80% of India’s 
cotton output (James 2009). Karihaloo and Kumar (2009) 
noted that between 2003–04 and 2006–07 cotton yields in 
India indicate a significant yield advantage of more than 
30% with Bt cotton compared with conventional varieties 
with corresponding increase in farm income. Transgenic 
cotton that produced one or more Bt insecticidal proteins 
was planted on over 15 million ha in 11 countries in 2009 
and has contributed to a reduction of over 140 million kg of 
insecticide active ingredient between 1996 and 2008. As a 
highly selective form of host plant resistance, Bt cotton 
effectively controls a number of key lepidopteran pests and 
has become a cornerstone in overall integrated pest manage-
ment (IPM). 

A study by Fernadez-Cornejo and McBride (2002) sug-
gests that for HT soya bean, a 10% increase in adoption in 
the USA would lead to a 0.3% yield increase. Better results 
were obtained for HT corn where a 10% increase in adop-
tion generated a 1.7% increase in yield and a 1.8% increase 
in net returns (Park et al. 2010). The Canola Council of 
Canada reported yield increases of up to 10% for transgenic 
compared with conventional varieties of canola. Direct 
comparison between mean yields of adopters versus non-
adopters needs treating with caution as the adopters could 
be the more productive farmers anyway. HT Canola was 
grown commercially in Canada for the first time in 1997. 
Within 6 years of the transgenic varieties being available, 
over 90% of the area was HT Canola and the overall area of 
the crop grown had increased from 12 to 16 Mha. One of 
the main reasons for adoption was that HT canola is used as 
a ‘cleaning crop’. In this way, the need for fallow is re-
moved and farmers can have one more crop in the rotation. 

 
CONCLUSION 
 
The tremendous potential of biotechnology as an applied 
science that uses biological knowledge to meet practical 
needs and the great advantages that will come to humankind 
from its applications, makes it likely that GT technology 
will continue to flourish. It could be considered as the 
‘silver bullet’ that will solve the problems of 21st century 
arising from abiotic and biotic stress including human 
malnutrition. To realize the full potential of this technology, 
concerted efforts in research and development are further 
needed to enhance the efficiency of various procedures/ 
techniques used in different crops against multiple stresses, 
as witnessed with the success stories Bt cotton, brinjal, 
maize, canola, soybean, tobacco, etc. that have been trans-
formed with one or more economic traits so far. Recent 
advances in the field of molecular biology and transgenic 
technologies have enabled the plant tailors to know the 
pitfalls regarding the expression of transgenes, emerging 
trends involving fusion proteins, deployment of antimicro-
bial peptides, stacked genes and various genes regulating 
metabolic pathways require special attention. Further, large-
scale field trials are needed to test whether expression of the 
introduced genes will affect yields, quality, or agronomic 
traits. Although the introduced genes are well-defined, the 
field trials also provide the opportunity to ascertain whether 
any unexpected or undesirable consequences have resulted 
from the transformation procedure. Genetically engineered 
crops are just beginning to make their way into the hands of 
breeders. Their potential for changing the characteristics of 
plants have already been demonstrated to a great extent. It 
remains for the market place to put a value on those traits 
and, ultimately, on the technology that makes these changes 
possible. 
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