Isolation and Screening of Polygalacturonase-Producing *Bacillus* sp.

Chiliveri Swarupa Rani • Panda Smita Hasini • Linga Venkateswar Rao

Department of Microbiology, Osmania University, Hyderabad 500007, Andhra Pradesh, India

Corresponding author: * vrlinga@gmail.com

ABSTRACT

Polygalacturonases (PGases) are the depolymerizing enzymes which cleave the α (1,4) glycosidic bonds between two galacturonic acid residues and are being used for the pretreatment of waste water from vegetable food processing industries containing pectinaceous material, processing and degumming of plant fibers such as ramie, sunn hemp, buel, etc. In the present study, 20 bacterial strains were isolated from different samples: soil, spoiled vegetables and fruits, and Godavari River water. All the strains were screened for their ability to utilize pectin as the sole carbon source. Out of the 20 bacterial strains studied, 12 possessed pectinolytic activity as evident from zones of hydrolysis on pectin plates. Selected strains were used for pectinase production by submerged fermentation using 0.25% citrus pectin and the enzyme filtrates were assayed for PGase activity by the DNS method. The effect of temperature, pH on enzyme activity and different media on enzyme production was studied. Maximum enzyme production was shown by strain 11 with medium 1 and optimum PGase activity was found to be at pH 9 at 60°C. Based on cultural and morphological studies the strains were preliminarily identified and assigned to the genus *Bacillus*.

Keywords: *Bacillus*, pectin, PGase, zone of hydrolysis

INTRODUCTION

Pectic substances are high molecular weight, negatively charged, acidic polysaccharides that are present as the major components of the middle lamella of plants in the form of calcium pectate and magnesium pectate (Jayani et al. 2005; Murad et al. 2011). Pectins are polymers of D-galacturonic acid residues linked by α (1,4) glycosidic linkages with a small number of L-rhamnose, arabinose, galactose and xylose as the side chains (Gummadi and Kumar 2005; Shembebar et al. 2009). The enzymes hydrolyzing these pectic substances are broadly classified as pectinases and include polygalacturonases (PGases; EC 3.2.1.15), pectin esterases, pectin lyases and pectate lyases depending upon their mode of action (Hoonadal et al. 2002; Kar et al. 2011). PGases catalyze the hydrolysis of α (1,4) glycosidic linkages in polygalacturonic acid (Kashyap et al. 2001; Murad et al. 2011). Pectinases are produced by plants (Prasanna et al. 2006) and microorganisms such as bacteria (Kapoor et al. 2001), fungi (Fahmy et al. 2008) and a few yeasts (Serrot et al. 2002). Microbial pectinases are extensively used in fruit juice processing, vegetable oil extraction, processing and degumming of plant fibres, processing of alcoholic beverages, treatment of industrial waste water, paper and pulp industries and have also been reported to be used for the purification of viruses (Favela-Torres et al. 2006; Arunachalam et al. 2010; Zeni et al. 2011). In the present study, an attempt was made to identify bacterial strains with pectinolytic activities from soil, water and decomposed vegetable samples with the objective of detecting superior strains.

MATERIALS AND METHODS

Microorganisms

Pectinolytic bacteria were isolated (Sunnotel and Nigam 2002) from soil, water and decomposed vegetables using YEPC broth (pH 7.0) containing 1% yeast extract, 0.25% pectin and 0.05% CaCl₂ by enrichment culturing and incubated at 37°C for 48 h. The broth was streaked on YEPC agar plates and morphologically distinct colonies were further subcultured onto fresh nutrient agar slants. Pure cultures were maintained by repeated subculture onto fresh slants and were stored at 4°C.

Screening of pectinolytic bacteria by plate assay

Isolated cultures were spot inoculated onto the same YEPC medium with 2% agar and incubated at 37°C for 48 h. To detect the zone of hydrolysis, the plates were flooded with Grams iodine. *Bacillus firmus* (NCIM-2462) was used as the control to compare the zone of hydrolysis of the isolated strains. The genus of the isolated strains was identified by morphological and biochemical characterization following “The Prokaryotes” II edition (Balows et al. 1991).

Pectin, a polysaccharide, when broken down into simple sugars by the enzymatic action of PGase, appears yellow-orange while pectin alone becomes brown after the reaction with Grams iodine.

Production of polygalacturonases by submerged fermentation

The strains showing large and clear zones were used for enzyme production. 20 ml of YEPC medium in 100-ml conical flasks were inoculated with 5% inoculum of overnight cultures grown in nutrient broth and incubated at 37°C for 48 h at 150 rpm. The samples were centrifuged at 10,000 rpm for 15 min at 4°C. The clear supernatant was collected and used for the assay of PGase activity.

Assay of polygalacturonase activity

The reaction mixture containing 0.1 ml of 1% PGA (Sigma Aldrich Pvt. Ltd) and 0.1 ml of supernatant was incubated at 40°C for 10 min. PGase activity was determined by measuring the
amount of reducing groups released using the DNS method (Miller 1959). One unit of enzyme activity was defined as 1 μmol of galacturonic acid released per min under the given conditions.

Effect of pH and temperature on enzyme activity

The effect of pH on the enzyme activity was determined by using different buffers (citrate-phosphate, sodium acetate, Tris-HCl and carbonate/bicarbonate) at pH values ranging from 3.8 to 11. The effect of temperature on enzyme activity was determined at 5°C increments from 30 to 80°C.

Effect of different media on enzyme production

Four different media were used to maximize the production of PGases. They were YEPC medium (HiMedia, Mumbai) (1% yeast extract, 0.25% citrus pectin, 0.05% CaCl₂, pH 7.2; Sunnotel and Nigam 2002), enriched medium 1 (1% pectin, 0.5% yeast extract, 0.1% KH₂PO₄, 0.1% MgSO₄·7H₂O, pH 7.2; Kapoor et al. 2000), enriched medium 2 (1% pectin, 0.14% (NH₄)₂SO₄, 0.6% K₂HPO₄, 0.20% KH₂PO₄, 0.01% MgSO₄·7H₂O, pH 7.2; Soares et al. 1999), enriched medium 3 (0.5% pectin, 0.2% K₂HPO₄, 0.25% MgSO₄·7H₂O, 0.5% Na₂HPO₄, 0.1% yeast extract, 0.179% casein, 2 ml/L micronutrient solution (in 1 L: 0.1 g Al(OH)₃, 0.5 g SnCl₂·2H₂O, 0.05 g KI, 0.05 g LiCl, 0.8 g MnSO₄·2H₂O, 0.5 g H₂BO₃, 0.1 g ZnSO₄, 0.1 g NiSO₄, 0.05 g BaCl₂, 0.05 g (NH₄)₆Mo₇O₂4·4H₂O; pH 7.2; Sharma and Satyanarayana 2006).

RESULTS AND DISCUSSION

Selection of strains with pectinolytic activity

Out of 20 bacterial strains isolated 12 strains showed a zone of hydrolysis on YEPC agar plates. Of the 12 strains, six (1, 8, 9, 10, 11 and 12) showed a maximum zone of clearance and were selected for enzyme production (Fig. 1). Identification of these six strains was done by morphological and biochemical characterization. The results showed that they are Gram positive, endospore-forming and Catalase-positive rod-shaped bacteria belonging to the genus *Bacillus* (Table 1).

Effect of pH and temperature on polygalacturonase activity

Maximum PGase activity among all the strains range from pH 8.0 to 9.0 (2.59 U/ml/min) except for strain 1, which had an optimum pH range between 10 and 11 (1.15 U/ml/min) (Fig. 2). The optimum temperature for strains 1, 8, 10 and 11 was 60°C (5.03 U/ml/min) while that for strains 9 and 12 was 45°C (3.01 U/ml/min) (Fig. 3). Singh et al. (2010) reported maximum PGase production at pH 6.8 and 30°C (6.2 U/ml/min) using *Bacillus sphaericus* (MTCC 7542). Further, Sharma and Satyanarayana (2006) found maximum PGase production at pH 10.5 and 50°C using *Bacillus pumilus*. Odeniyi et al. (2009) found that at pH 6.0 and 50-60°C, pectinase production was maximum using *Bacillus coagulans*. Other pectinases having optimum pH in an alkaline range have been reported from different *Bacillus* spp. such as NT-2, NT-6, NT-33 and NT-82 (Cao et al. 1992). Kapoor et al. (2002) reported maximum PGase activity at an optimum temperature of 60°C (pH 10.0) from *Bacillus* sp. MG-cp-2. PGases are mostly active under alkaline conditions, which is commercially important in the treatment of industrial waste water-containing pectinaceous material and also useful in processing and degumming of bast fibers (Horikoshi 1990; Kapoor et al. 2000). However, only a few reports are available on the applications of alkaline pectinases.

Table 1 Morphological and biochemical characters of all the isolates.

<table>
<thead>
<tr>
<th>Test</th>
<th>1</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram staining</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Endospore</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Catalase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Voges-Proskauer</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Growth in anaerobic agar</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Growth at 50°C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Growth in 7% NaCl</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Acid and gas from glucose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NO₂ reduced to NO₃</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Starch hydrolysis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Growth at 65°C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rods 1 m wide</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pH in VP medium < 6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Acid from glucose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hydrolysis of casein</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parasporal bodies</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Fig. 1 Pectin (0.25%) plate showing zones of hydrolysis by the strains.

Fig. 2 Effect of pH on polygalacturonase activity (U/ml/min) of the isolates.

©2012 Global Science Books
Screening for polygalacturonase producing microbes. Chiliveri et al.

Maximum PGase activity found in strains 8, 9 and 12 when grown in medium 3 was 3.45, 3.39 and 3.6 U/ml/min, respectively. Further, strains 10 and 11 showed highest PGase production (4.85 and 5.03 U/ml/min) in medium 1 (Fig. 4). However, there was no significant PGase production in medium 4 by any of the strains. When the concentration of pectin was increased in the medium, all strains showed a decrease in the production of PGase. Kashyap et al. (2000) also reported maximum production with 1% yeast extract and 0.25% pectin in medium using Bacillus sp. DT7 while Singh et al. (2010) reported maximum PGase production with 1.25% pectin using Bacillus sphaericus.

CONCLUSIONS

Six bacterial strains were isolated and identified as the Bacillus genus. Maximum PGase activity was obtained with strain 11 (5.03 U/ml/min) at pH 9, 60°C when medium 1 was used for production. Further improvement of enzyme activity by employing strain development strategies is being considered.

ACKNOWLEDGEMENTS

The authors thank Dr. Jaime A. Teixeira da Silva for making significant improvements to grammar and style.

REFERENCES

Cao J, Zheng L, Chen S (1992) Screening of pectinase producer from alkalophilic bacteria and study on its potential application in degumming of ramie. Enzyme Microbial Technology 14, 1013-1016
MG-cp-2 in degumming of ramie (Boehmeria nivea) and sunn hemp (Crotolaria juncea) bast fibers. Process Biochemistry 36, 803-807
Kapoor M, Kuhad RC (2002) Improved polygalacturonase production from Bacillus sp. MG-CP-2 under submerged (SmF) and solid state (SSF) fermentation. Letters in Applied Microbiology 34, 317-322
Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31 (3), 426-428
Prasanna V, Prabha TN, Tharanathan RN (2006) Multiple forms of polygalacturonase from mango (Mangifera indica L. cv Alphonso) fruit. Food Chemistry 95, 30-36