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ABSTRACT 
Cholesterol oxidase (COx) catalyzes the oxidation of cholesterol into 4-cholesten-3-one. COx has various clinical and industrial 
applications. Cholesterol oxidase a bifunctional FAD-containing microbial enzyme belongs to the family oxidoreductases. In recent time, 
cholesterol oxidase has received great attention due to its wide use in clinical (determination of serum cholesterol) and laboratory 
practices. The COx has also been implicated in the manifestation of some of the diseases of bacterial (tuberculosis), viral (HIV) and non-
viral prion origin (Alzheimer’s). This review summarize the important pathogenic features of COx enzyme, its protein structure, patho-
genic bacteria requiring COx for their virulence in host, and some of its clinical applications. 
_____________________________________________________________________________________________________________ 
 
Keywords: Cholesterol oxidase, applications, classification, properties, structure 
Abbreviations: COx, cholesterol oxidase; C, carbon; QTL, quantitative trait locus; COP, cholesterol oxidation product; FAD, adenine 
dinucleotide; VAO, vanillyl alcohol oxidase 
 
CONTENTS 
 
INTRODUCTION........................................................................................................................................................................................ 40 

Foods that contain cholesterol ................................................................................................................................................................. 40 
CHEMISTRY OF CHOLESTEROL............................................................................................................................................................ 41 
CHOLESTEROL OXIDASE ....................................................................................................................................................................... 41 

Classification of COx .............................................................................................................................................................................. 41 
Reaction catalyzed by COx ..................................................................................................................................................................... 41 
Types of cholesterol oxidases .................................................................................................................................................................. 42 
COx binding ............................................................................................................................................................................................ 42 
FAD binding ............................................................................................................................................................................................ 42 
Active site of COx ................................................................................................................................................................................... 42 
Applications of COx................................................................................................................................................................................ 43 

CONCLUSION............................................................................................................................................................................................ 45 
ACKNOWLEDGEMENTS ......................................................................................................................................................................... 45 
REFERENCES............................................................................................................................................................................................. 45 
_____________________________________________________________________________________________________________ 
 
 
INTRODUCTION 
 
Cholesterol (cholest-5-en-3�-ol) as it is now known as a 
soft waxy compound belongs to the steroid family of 
molecules and is found among the lipids (fats) in the blood 
stream as well as in all cells of the body. Cholesterol is not 
a life threatening toxin, but a medium sized molecule that is 
really a building block for important body parts. In particu-
lar it is an essential component of mammalian cell mem-
branes. Cholesterol also stabilizes a cell against temperature 
changes. It is a major part of the nervous system, the brain, 
the spinal cord and the peripheral nerves. Most of the cho-
lesterol is an animal sterol. However, plants also make trace 
amount of cholesterol (Nelson 2005), but make other sterols 
in larger amounts. Cholesterol is formed from squalene via 
lanosterol (Nelson 2000; Christie 2003). Healthy individual 
is capable of synthesizing all of the cholesterol one needs, 
without a dietary source. The human body contains about 
100 g of cholesterol. Most of this incorporates in the mem-
brane from which cells are constructed, and is an indispen-
sable component of them. The insulating layers of myelin 
wound around neurons are especially rich in cholesterol. All 
the cholesterol required for biological functions are pro-
duced endogenously (by body) that constitutes approxi-
mately 80% of the blood cholesterol level. 

Cholesterol biosynthesis is a highly regulated process 
that occurs in almost all animal tissues. In mammals cho-
lesterol is more abundant in tissues which either synthesize 
or have more abundant densely-packed membranes, for 
example, the liver, spinal cord, brain and atheromata (arte-
rial plaques). Cholesterol plays a central role in many bio-
chemical processes, but is best known for the association of 
cardiovascular disease with various lipoprotein cholesterol 
transport patterns and high levels of cholesterol in the blood. 
It is insoluble in blood, but is transported in the circulatory 
system bound to one of the varieties of lipoprotein, the 
spherical particles which have an exterior composed mainly 
of water-soluble proteins. Some new biosensor based sensi-
tive techniques have been reported for the detection of 
serum cholesterol (Ahmadalinezhad and Chen 2011; Ruecha 
et al. 2011; Yang et al. 2011), whole blood-cholesterol 
(Fang et al. 2011) and cholesterol in the vegetable derived 
foodstuffs (Jove et al. 2010). 

 
Foods that contain cholesterol 
 
The accumulation of excess cholesterol contributes to the 
causes of hyperlipemia, which increases the risk of arterio-
sclerosis (Silbernagel et al. 2009). An excessive intake of 
fatty compounds may also increase cholesterol absorption 
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in vivo (Matsuoka et al. 2012). The cholesterol in diet 
comes mainly from the saturated fats found in animal prod-
ucts. All foods of animal origin contain some-cholesterol 
content e.g. chicken liver, chicken giblet, eggs, beef liver, 
butter, shrimp, veal, pork shoulder, salmon, lard, crab etc. as 
the data suggested by USDA database. Foods from plants 
do not contain cholesterol. Other sources of dietary choles-
terol are full-fat dairy foods, eggs and some seafood. Often 
the mixtures of cholesterol with selected foodstuffs (like 
cocoa and/or green tea) and bile, cause strong interference 
in widely used biochemical method of cholesterol assay and 
high end detection method like mass-spectrometry based 
chromatography allows accurate detection of cholesterol in 
the foodstuff (Jove et al. 2010). 
 
CHEMISTRY OF CHOLESTEROL 
 
Cholesterol consists of four fused rings; an aliphatic side 
chain branched to the D ring at C-17, a hydroxyl group 
attached to the A-ring at C-3, and a double bond between C-
5 and C-6 of B ring. This double bond makes both C-4 of 
A-ring and C-7 of B ring on the same plane. One may 
expect that both the C-4 and C-7 position should have an 
equal opportunity for an oxidative attack to occur. However, 
C-7 is indeed a common position for oxidants to react. In 
contrast, the attack rarely occurs at C-4 because of the pos-
sible shielding effect provided by the neighboring hydroxyl 
group at C-3 and the trialkyl substituted C-5 (Smith 1981). 
Both the 20- and 25-C of the aliphatic side chain are at a 
tertiary position, and are, therefore, more susceptible to oxi-
dative attack than the other carbons (Maerker 1987). The 
oxidation of cholesterol produces a variety of cholesterol 
oxidation products (COPs). 

 
CHOLESTEROL OXIDASE 
 
Cholesterol oxidase (COx) is a flavo-protein that catalyzes 
the oxidation and isomerization of steroids containing a 3�-
hydroxyl group and a double bond at C-5 of the steroid ring 
system. The enzyme has been used in the determination of 
serum cholesterol and in the clinical diagnosis of arterio-
sclerosis and other lipid disorders. In addition, it has been 
shown to be a potent parricide (Purcell et al. 1993; Corbin 
et al. 1994) and is currently being developed in the agricul-
tural industry as a pest control (Corbin et al. 1998). Further-
more, COx is an example of a soluble enzyme that interacts 
with a lipid bilayer to bind an insoluble substrate. Structural 
and biochemical studies on the enzyme containing the fla-
vin adenine dinucleotide (FAD)-1 cofactor non-covalently 
bound to the protein have revealed the region of the enzyme 
involved in interaction with the lipid bilayer and had led to 
a possible mechanism for membrane interaction (Li et al. 
1993; Sampson et al. 1998). COx in Brevibacterium stero-
licum was found to exist in two forms, one in which the 
FAD cofactor was non-covalently bound to the enzyme 
(BCO1) and the other in which the cofactor was covalently 
linked (BCO2). 

Furthermore, some pathogenic bacteria require COx to 
infect their host macrophage, probably because of the abil-
ity of the COx to convert cholesterol to cholesterol-4-en-3-
one in the membrane (Brozstek et al. 2007). As these en-
zymes are unique to bacteria, they represent a potential tar-
get for a new class of antibiotics. It has been demonstrated 
that Alzheimer’s disease �-amyloid selectivity oxidized 
cholesterol at the C-3 hydroxyl group and catalytically pro-
duced 4-cholesten-3-one; therefore it mimics the activity of 
COx (Puglielli et al. 2005). COx have been isolated from 
several sources other than Streptomyces, including members 
of the genera Brevibacterium (Uwajima et al. 1974), Schi-
zophyllum (Fukuyama and Miyake 1979), Burkholderia 
(Doukyu and Aono 2001), Rhodococcus (Aihara et al. 
1986; Navas et al. 2001) and Micrococcus sp. (Kanchana et 
al. 2011). The crystal structures of the enzymes from Brevi-
bacterium sterolicum and Streptomyces sp. SACOO have 
been determined at 1.8 and 1.5Å resolutions, respectively 

(Vrielink et al. 1991; Yue et al. 1999; Lario et al. 2003). 
Most of the COx are monomeric and contain flavin-adenine 
dinucleotide (FAD) as a prosthetic group (Uwajima et al. 
1974). 

COx is produced by two types of bacteria: (a) nonpatho-
genic bacteria, which utilize cholesterol as a carbon source; 
and (b) pathogenic bacteria, which require COx for infec-
tion of the host macrophage because of its ability to alter 
the physical structure of the lipid membrane by converting 
cholesterol into cholest-4-en-3-one. Both pathogenic and 
nonpathogenic bacteria up-regulate the expression of COx 
in the presence of cholesterol. 

 
Classification of COx 
 
The taxonomical classification of COx-containing microor-
ganisms has developed all through the years since its dis-
covery and some species with originally distinct names 
have been shown by such methods as DNA profiling to be 
identical/related. COx produced by several microorganisms 
that are found in quite different environments. Turfitt was 
the first to isolate the enzyme from the microbe Nocardia 
erythropolis and to show its effect as an oxidant of choles-
terol (Turfitt 1944, 1946, 1948). A soil Mycobacterium pro-
duced COx that was involved in the production of 4-choles-
ten-3-one. The 4-cholesten-3-one was first isolated by incu-
bation of cholesterol with a cell free extract of the enzyme 
from this Mycobacterium sp. (Stadtman et al. 1954). Since 
then, the enzyme has been found in many microorganisms 
that include Arthrobacter (Wilmanska and Sedlaczek 1949), 
Arthrobacter rhodochrous (Doukyu 2009) Corynebacterium 
(Shirokane et al. 1977), Nocardia erythropolis and Rhodo-
coccus erythropolis (Richmond 1973; Buckland et al. 1976; 
Cheetham et al. 1979; Cheetham et al. 1980, 1982; Aihara 
et al. 1986; Atrat et al. 1992; Minuth et al. 1995) now re-
garded as the same species), Nocardia rhodochrous and 
Rhodococcus rhodochrous, Mycobacterium (Schatz et al. 
1949; Smith et al. 1995), Pseudomonas spp. (Rhee et al. 
1991; Doukyu and Aono 1998), Schizopyllum commune 
(Fukuyama and Miyake 1979), Brevibacterium sterolicum 
(Uwajima et al. 1973; Ohta et al. 1991, Croteau and Vrie-
link 1996: Mottern et al. 2001), Streptoverticillium choles-
terolicum (Inouye et al. 1982), Streptomyces violascens 
(Kamei et al. 1978; Ishizaki et al. 1989; Lartillot et al. 
1990), Streptomyces spp. (Nishiya et al. 1997; Ghoshroy et 
al. 1997; Lario et al. 2003), Rhodococcus spp. (Watanabe et 
al. 1986; Watanabe et al. 1989; Kreit et al. 1992), Rhodo-
coccus erythropolis (Sojo et al. 1997), Enterobacter spp (Ye 
et al. 2008) and Micrococcus sp. (Kanchan et al. 2011). 

 
Reaction catalyzed by COx 
 
The enzyme COx has the ability to convert 3-hydroxy-ste-
rols to their respective keto derivatives. The conversion of 
cholesterol (5-cholesten-3�-o1) to cholestenone (4-choles-
ten-3-one) by COx has been used to probe the localization 
and distribution of cholesterol in different biological struc-
tures (Gottlieb 1977; Moore et al. 1977; Patzer et al. 1978; 
Thurnhofer et al. 1986; Slotte et al. 1987, 1989). The inter-
action of cholesterol with sphingomyelins significantly 
retards the enzyme-catalyzed oxidation of cholesterol in 
biological as well as in monolayer membranes (Slotte et al. 
1989; Gronberg et al. 1990). It was further observed that the 
surface pressure (i.e. the lipid packing) of the substrate 
membranes (Gronberg et al. 1990) markedly affected the 
catalytic activity of cholesterol oxidases at the water/ lipid 
interphase. 

COx a FAD-dependent bifunctional enzyme catalyzes 
both the oxidation of cholesterol (5-cholesten-3�-ol) to the 
temporary intermediate 5-cholesten-3-one with the reduc-
tion of molecular oxygen to hydrogen peroxide and the 
isomerization of the steroid with a trans A: B ring junction 
to reduce 4-cholesten-3-one (Stadtman et al. 1954; Choles-
terol (5-cholesten-3-ol) � 5-cholesten-3-one � 4-choles-
ten-3-one). Bacterial COx also exhibited ketosteroid mono-
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oxygenase activity, which catalyzed the hydroxylation of 
cholesterol to 4-cholesten-6-ol-3-one (Molnar et al. 1993). 

 
Types of cholesterol oxidases 
 
COx is a monomeric flavoenzyme that catalyzes the oxida-
tion and isomerization of cholesterol to cholest-4-en-3-one. 
Two forms of the enzyme are known, one containing the co-
factor non-covalently (class I) bound to the protein and the 
other in which the cofactor is covalently linked (class II) to 
a histidine residue. The X-ray structure of the enzyme from 
Brevibacterium sterolicum containing covalently bound 
FAD has been determined and refined to 1.7 Å resolutions 
(Coulombe et al. 2001). The active site consists of a cavity 
sealed off from the exterior of the protein. A model for the 
steroid substrate, cholesterol, can be positioned in the 
pocket revealing the structural factors that result in different 
substrate binding affinities between the two known forms of 
the enzyme. The structure suggests that Glu475, located at 
the active site cavity, may act as the base for both the oxi-
dation and the isomerization steps of the catalytic reaction. 
A water filled channel extending towards the flavin moiety 
inside the substrate-binding cavity, may act as the entry 
point for molecular oxygen for the oxidative half reaction. 
An arginine and a glutamate residue at the active site, found 
in two conformations are proposed to control oxygen access 
to the cavity from the channel. These concerted side-chain 
movements provide an explanation for the biphasic mode of 
reaction with dioxygen and the ping-pong kinetic mecha-
nism exhibited by the enzyme. 

The sequence and structure of a class II oxidase has 
been obtained from a different Brevibacterium strain and 
has been shown to be significantly different (Coulombe et 
al. 2001). This enzyme has also been studied by kinetic 
analysis of site-directed mutant targeting the His residue 
which is the FAD attachment site and the importance of the 
covalent bond in enzyme stability and redox power has 
been stressed (Motterran et al. 2001; Caldinelli et al. 2005; 
Lim et al. 2006). Although both classes of COx exhibit a 
broad range of steroid specificities and can oxidize a num-
ber of hydroxysterols including sterols, steroid hormones 
and bile acids (Maclachlan et al. 2000), the presence of a 
3�-hydroxyl group in the substrate is an important require-
ment for activity (Smith and Brook 1976). The hydroxyl 
group at C3� of cholesterol has to be equatorial but the 
double bond is not necessary for the oxidation to proceed 
(Biellmann 2001). The side chain of cholesterol is also not 
essential for the oxidation, and various functionalities may 
be present at different positions of the steroid nucleus, thus 
making this enzyme a rather flexible one regarding sub-
strates. Moreover, the enzyme has been described to oxidize 
substrates not belonging to the cholestan family such as 
allylic alcohols (Dieth et al. 1995). 

 
COx binding 
 
Both types class I and class II of COx catalyze the same re-
action but show different kinetic mechanisms. This func-
tional difference appears with the large difference in the 
structure of two forms of enzymes (Vrielink et al. 1991; Yue 
et al. 1999; Coulombe et al. 2001). The exact structural 
state (E.S) of either types of COx is not clear yet. The bin-
ding geometry of the substrate for type I enzyme from 
atomic resolution has been worked out (Lario et al. 2003) 
and that explained the structure of a steroid substrate bound 
to the reduced enzyme (Li et al. 1993). In 2000, a structural 
model for steroid placed C3 steroid atom within a hydrogen 
bond distance (3.0Å) of N5 of FAD and in a position similar 
to those of hydride donor in many other flavoenzyme oxi-
dases (Fraagi and Mattevi 2000). To know the accuracy of 
E.S-Michaelis complex and to better understand the effect 
of the protein microenvironment on substrate binding and 
turnover, a structure of the E.S complex of oxidized COx 
was studied (Lyubimov et al. 2007). They took two high 
resolution structure of a double mutant of bacterial COx in 

the absence and presence of ligand, glycerol, showing 
trajectory of glycerol as it bind the complex in active site. 
Earlier it was reported that oxidation rate of cholesterol by 
COx is dependent on the enzyme concentration and is 
orders of magnitude faster than the rate of sterol desorption 
from the membrane (Phillips et al. 1987; Lund-Katz et al. 
1988; Bar et al. 1989). This kinetically suggested the inter-
action of COx with lipid bi-layer in order to bind its sub-
strate. 

The X-ray crystal structure of COx given by Blow and 
co-workers (Vrielink et al. 1991; Li et al. 1993) revealed 
that the enzyme must undergo a conformational change in-
volving 10-20 amino acid residues in order to bind substrate. 
Although the conformation of the open enzyme was not 
known, it was postulated that an active-site lid, composed 
of some of these 20 residues, opens to form a hydrophobic 
channel between the membrane and the active site in order 
to bind sterol iso-ergonically. Binding buried the four rings 
of the sterol completely in the active site. Later in 1995 it 
was demonstrated that COx does complete lysis of epi-
thelial cells in boll weevil (Anthonomus grandis grandis) 
larvae. Dye leakage experiment was conducted (Ghoshry et 
al. 1997) to check the membrane disruption mechanism. 
Leakage was observed with cholesterol containing vesicles 
and wild type enzyme only; the rate of leakage was depen-
dant on the rate of cholest-4-en-3-one production. The COx 
binding to membrane and COx partitioning to the active site 
did not perturb the bilayer to cause leakage of vesicle con-
tent. However, the formation of cholest-4-en-3-one did in-
crease the membrane permeability. The activity of COx was 
directly and sensitivity-dependent on the physical properties 
of the membrane with which its substrate was bound (Ahn 
and Sampson 2004). COx was considered as an interfacial 
enzyme that transiently associates with lipid membrane to 
convert cholesterol to cholest-4-en-3-one (Sampson and 
Kwak 2007). 

 
FAD binding 
 
The FAD is deeply buried in the protein structure and is 
involved in extensive contacts mainly with the FAD binding 
domain. The pyrophosphate group involved in hydrogen 
bond contacts with main chain atoms of the loop between 
Gly118 and Gly122 and this situation can be easily under-
stood with the its structure (Vrielink and Ghisla 2009). A 
similar type of interaction has also been observed in the 
structure of vanillyl alcohol oxidase (VAO) and this loop 
region has been defined as the PP loop (Mattevi et al. 1997). 
The cofactor is linked to the protein through a covalent 
bond between ND1 of the imidazole side chain of His121 (a 
residue in the PP loop) and the 8-methyl group of the iso-
alloxazine ring. The histidine side chain approaches the iso-
alloxazine ring from the si face of the flavin unlike VAO 
where the covalent histidine originates in the substrate 
binding domain and approaches the flavin moiety from the 
re face. Therefore, in BCO2, the PP loop appears to play a 
critical role in positioning the cofactor correctly within the 
structure of the enzyme through two factors: the covalent 
linkage to the isoalloxazine ring and the hydrogen bond 
interactions with the pyrophosphate moiety. 

 
Active site of COx 
 
The binding sites of the enzyme in both forms are packed 
by a number of loops from the external environment, which 
provide high mobility than other proteins. This nature of 
protein packing shows easy access of the steroid molecule 
to enter in the hydrophobic pocket. The structure compari-
sons of SCOx and ReCOx (recombinant COx) showed dif-
ference in the nature of loops. The rigidity of loops is more 
in SCOx as it contain amphipathic helical turn; while in 
case of ReCOx loops is more extendable, lack secondary 
structure element and exhibit higher temperature factors 
(Yue et al. 1999). The substrate mobility of SCOx and 
ReCOx was compared (Yue et al. 1999) by correlating the 
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elevated KM values for both, cholesterol and dehydroisoan-
dosterone. Finally it was reported that the increased rigidity 
of SCOx loops pre-orient the residue needed for binding the 
8-carbon isoprenoid tail at C17 of the substrate, thus in-
creases the efficiency of the enzyme for catalysis (for 
details see review by Vrielink and Ghisla, 2009). The active 
site of BCO2 consists of a cavity (with a volume of 450 Å3) 
bounded on one side by the â-pleated sheet in the substrate-
binding domain and, on the opposite side, by the isoalloxa-
zine ring of the cofactor. Two loops in the substrate-binding 
domain (between â12 and á5 and between á7 and â14) 
exhibit higher than average temperature factors suggesting a 
possible entrance for cholesterol to the active site. The 
residues lining the cavity near the pyrimidine moiety of the 
cofactor are highly hydrophilic and include Arg477, Glu475, 
Glu551, Glu432, Glu311, Asn516 and Lys554. The charged 
nature of this region of the active site is in sharp contrast to 
that seen in the structure of BCO1 and it is precisely these 
differences that are likely to play an important role in the 
reactivity of the flavin cofactor. The region near to the di-
methylbenzene ring of the cofactor consists mainly of 
hydrophobic residues (Coulombe et al. 2001). 

 
Applications of COx 
 
1. COx and pathogenicity 
 
COx is produced by a number of microorganisms including 
life threatening pathogens such as Rhodococcus equi, 
Mycobacterium tuberculosis and Mycobacterium leprae. 
COx is an interesting clinical enzyme for the treatment of 
bacterial infections. Gene disruption studies indicated that 
COx is the main membrane damaging factor, contributing to 
the pathogenicity of the microbes in vivo. Mutational analy-
sis indicated that COx membrane damaging factor imparts 
to heamolytic reaction elicited by Rhodoccocus equi in the 
presence of sphingomyelinase C-producing bacteria, such 
as Listeria ivanivii, Bacillus cereus and Staphylococcus 
aureus (Navas et al. 2001). As these enzymes are unique to 
bacteria, they represent a potential target for a new class of 
antibiotics. Intriguingly, it has been demonstrated that Alz-
heimer’s disease �–amyloid selectively oxidizes cholesterol 
at the C-3 hydroxyl group and catalytically produces 4-cho-
lesten-3-one (Puglielli et al. 2005). Therefore, it mimics the 
activity of COx (Puglielli et al. 2005). 

Removal of cellular cholesterol rendered primary cells 
and cell lines highly resistant to HIV-1-mediated syncytium 
formation and to infection by both CXCR4- and CCR5-spe-
cific viruses. Thus it appears that cholesterol may be critical 
to the HIV-1 co-receptor function of chemokine receptors 
and is essentially required for infection of cells by HIV-1 
(Liao et al. 2004). 

 
2. Mycobacterium infections 
 
Mycobacterium tuberculosis, the causative agent of tuber-
culosis, is a very successful pathogen that infects one-third 
of the human population (Maher and Raviglion 1999). Only 
10% of primary infected individuals develop active disease 
during their lifetimes. Tubercle bacilli are able to persist in 
a dormant state, from which they may reactivate and induce 
the contagious disease state (Glickman and Jacobs 2001). In 
asymptomatic hosts, M. tuberculosis exists in reservoirs 
called granulomas, which are cellular aggregates that res-
trict bacterial spreading (Tufariello et al. 2003). Granulo-
mas are organized collections of mature macrophages that 
exhibit a certain typical morphology and that arise in res-
ponse to persistent intracellular pathogens (Adams 1976). 

Pathogenic mycobacteria can induce the formation of 
foamy macrophages filled with lipid-containing bodies; 
these have been postulated to act as a secure, nutrient-rich 
reservoir for tubercle bacilli (Peyron et al. 2008). Moreover, 
M. tuberculosis DNA has been detected in fatty tissues sur-
rounding the kidneys, as well as those of the stomach, 
lymph nodes, heart and skin. Tubercle bacilli are able to 

enter adipocytes, where they accumulate within intracyto-
plasmic lipid inclusions and survive in a nonreplicating 
state (Neyrolls et al. 2006). In vivo, it is expected that M. 
tuberculosis adapts metabolically to nutrient-poor conditions 
characterized by glucose deficiency and an abundance of 
fatty acids (Muñoz and Mckinney 2006; Neyrolls et al. 
2006). The presence of a complex repertoire of lipid meta-
bolism genes in the genome of M. tuberculosis suggests that 
lipids, including steroids, are important alternative carbon 
and energy sources for this pathogen (Cole et al. 1998). One 
attractive potential alternative nutrient that is readily availa-
ble in the mammalian host is cholesterol, a major sterol of 
the plasma membrane. The presence of cholesterol in lipid 
rafts is required in order for microorganisms to enter the 
intracellular compartment (Goluszko and Nowicki 2005). 
Studies have shown that cholesterol is essential for the 
uptake of mycobacterium by macrophages, and it has been 
found to accumulate at the site of M. tuberculosis entry 
(Gatfield and Pieters 2000; Peyron et al. 2000; Astarie et al. 
2009). Moreover, cholesterol depletion overcomes the pha-
gosome maturation block experienced by Mycobacterium 
avium-infected macrophages (Chastellier and Thilo 2006). 
It is well known that cholesterol can be utilized by fast 
growing nonpathogenic mycobacterium (Martin 1977; 
Mahato and Garai 1997; Brzostek et al. 2007) but it was 
previously thought that pathogenic mycobacterium might 
not be able to use cholesterol as a carbon and energy source 
(Cole et al. 1998). 

The bioinformatics analysis identified a cassette of cho-
lesterol catabolism genes in Actinomycetes, including the M. 
tuberculosis complex (Gaize et al. 2007). Microarray analy-
sis of Rhodococcus sp. grown in the presence of cholesterol 
revealed the up regulation of 572 genes, most of which fell 
within six clearly discernible clusters (Gaize et al. 2007). 
Most of the identified genes had significant homology to 
known steroid degradation genes from other organisms and 
were distributed within a single 51-gene cluster that appears 
to be very similar to a cluster present in the genome of M. 
tuberculosis (Gaize et al. 2007). Many of the cholesterol-
induced genes had been previously selected by transposon 
site hybridization analysis of genes that are essential for 
survival of tubercle bacilli (Rengarajan et al. 2005) and/or 
are up regulated in interferon-activated macrophages 
(Schnappinger et al. 2003; Voskuil et al. 2003). It was also 
demonstrated that the M. tuberculosis complex can grow on 
mineral medium with cholesterol as a primary source of 
carbon (Gaize et al. 2007; Pandey and Sassetti 2008). 
Moreover, the growth of tubercle bacilli on cholesterol was 
significantly affected by knockout of the mce4 gene, which 
encodes an ABC transporter responsible for cholesterol 
uptake (Mohn et al. 2008; Pandey and Sassetti 2008). 

Earlier studies had shown that disruption of mce4 
attenuated bacterial growth in the spleens of infected ani-
mals that had developed adaptive immunity (Sassetti and 
Rubin 2003; Joshi et al. 2006). It was demonstrated for the 
first time that M. tuberculosis utilizes cholesterol via the 4-
androstene-3, 17-dione/1, 4-androstadiene-3, 17-dione path-
way (AD/ADD) and this process requires production of an 
intact KD enzyme. Moreover, the tubercle bacilli growing 
in medium containing an alternative carbon source can 
accumulate cholesterol in the free-lipid zone of their cell 
walls, and this accumulation affects cell wall permeability. 

 
3. Rhodococcus equi infection 
 
Rhodococcus equi is a well know pathogen able to induce 
lysis in the cell membrane with the help of COx enzyme 
(Linder and Bernheimer 1997). Human suffering from HIV 
is susceptible to Rhodoccocus equi. This is a Gram positive 
cocobacillus that reside within macrophage of the host. It is 
a common soil organism that frequently infects young horse. 
Bacteria can replicate in primary phagosomes within the 
macrophage. Activated macrophages produce a number of 
reactive oxygen intermediate (ROI) and nitric oxide with 
potent anti-microbial activity. A membrane bonded oxidase 

43



Cholesterol oxidase and its role in pathogenesis. Kumari and Kanwar 

 

catalyses the reduction of oxygen to superoxidase anion 
(SOA). This highly toxic oxygen intermediate can combine 
with nitric oxide and generate other anti-microbial agents, 
e.g. hydrogen peroxidae (H2O2) and peroxynitrite. It was 
shown that peroxynitrite mediates the intracellular killing of 
Rhodococuss equi (Darrah et al. 2000). The induction of 
enzymes by bactericidal agents H2O2 and SOA was studied 
in the presence of cholesterol in vivo for viewing the role of 
COx for cell invasion, and SOD as well as catalase for the 
intracellular survival of R. equi. The data suggested that the 
presence of cholesterol induces COx in bacteria grown on 
agar plates; moreover catalase, SOD and even membrane 
bound COx responded to reactive oxygen species. The 
hemolytic activity of Rhodococuss equi COx was confirmed 
through genetic experiments (Navas et al. 2001). Choles-
terol oxidation was significantly increased when the strain 
was co-phagocytosed with Corynebacterium pseudotuber-
culosis, a sphingomyelinase-producing bacterium and a co-
operative partner of Rhodococuss equi in the in vitro hemo-
lysis of sheep erythrocytes (Linder and Berheimer 1982). 

All these studies did not confirm whether it is the lytic 
function or a nutritional function which contributes to bac-
terial survival in macrophage (Kreit and Sampson 2009). 
This concept was further elaborated with the help of muta-
ted strain of Rhodococuss equi that was originally isolated 
from foal (a young horse) infected with pneumonia, in 
which Cho E (COx) was disrupted by allelic exchange. This 
mutant strain was devoid of any COx activity. Further, this 
mutant was assessed for in vivo virulence in mice or foal 
and for in vitro cytotoxicity to macrophages (Pei et al. 2006, 
2007). Based on the results obtained from mutated and 
parental strain, and their similar cytotoxicity to macro-
phages it was concluded that COx is not a virulence factor 
and its role may be limited to the catabolism of cholesterol 
as a carbon source and energy source of the infecting bac-
terium (Kreit and Sampson 2009). 

 
4. Role of COx in agriculture 
 
COx represents a novel type of insecticidal protein with 
potent activity against the cotton boll weevil (Anthonomus 
grandis Boheman). Genetically modified plants that pro-
duce insecticidal proteins (e.g. the Bacillus thuringiensis 
toxin) are now available to control insect pests of several 
major crops. Purified COx is active against boll weevil lar-
vae at a 50% lethal concentration (LC50) of 20.9 μg/mL), 
which is comparable to the bioactivity of Bacillus thuringi-
ensis proteins against other insect pests. Upon ingestion, 
this protein causes developmental arrest and death of boll 
weevil larvae (Purcell et al. 1993) and a marked decrease in 
fecundity of female adult boll weevils (Greenplate et al. 
1995). The enzyme also exhibits more moderate insecticidal 
effects when ingested by several species of lepidopteran 
cotton insect pests including tobacco budworm (Heliothis 
virescens), corn earworm (Helicoverpa zea), and pink boll-
worm (Pectinophora gossypiella; Greenplate et al. 1997). In 
addition to boll weevil, several lepidopterans were nega-
tively affected by the presence of COx at a dietary concen-
tration of 0.001%. The addition of cholesterol oxidation 
products by COx (i.e. cholest-en-3-one and hydrogen per-
oxide) to the diet, and re-treating the diet with the enzyme, 
excluded insecticidal effects caused by the ingestion of 
toxic compounds. However, the boll weevil larvae are 
acutely sensitive to ingested COx because it induces lysis at 
the mid-gut epithelium. Boll weevil adults are insensitive to 
ingested COx, although the fecundity of adult females was 
greatly reduced if 50 μg/mLof the enzyme was present in 
the diet (Greeplate et al. 1995). COx reduced subsequent 
oviposition (up to 83% in eggs laid) and larval survival 
(97% reduction as compared to controls) because of poorly 
developed ovaries and few developing oocytes. COx was 
expressed in transformed tobacco plants, and the synthesis 
levels in leaf tissues routinely ranged from approximately 
5-50 μg of enzyme/g fresh weight. 

In the absence of a chloroplast targeting sequence, COx 

production resulted in severe abnormalities in plant deve-
lopment and fertility. When produced as a fusion with a 
chloroplast-targeting peptide, synthesis of the mature and 
the full-length enzyme did not cause the deleterious pheno-
typic effect observed with untargeted COx (Corbin et al. 
2001). Transgenic leaf tissues expressing COx exerted in-
secticidal activity against boll weevil larvae. When pro-
duced in the cytosol, or when targeted to chloroplasts, COx 
metabolizes phytosterols in vivo. Transgenic plants ex-
pressing COx in cytosol accumulated low levels of satu-
rated sterols (stanols), while the transgenic plants ex-
pressing chloroplast-targeted COx maintained a greater 
accumulation of stanols and appeared phenotypically and 
developmentally normal. It was proposed that COx could 
modify sterol ratios, thus influencing cell division, or could 
affect brassino steroid biosynthesis in steroid hormones. 
Thus this enzyme is industrially important and is commonly 
used for the enzymatic transformation of cholesterol (Arima 
et al. 1969). 

 
5. Clinical use 
 
COx is also useful for the clinical determination of total or 
free serum cholesterol by coupling with a related enzyme 
for the assessment of arteriosclerosis and other lipid dis-
orders and of the risk of thrombosis (Allain et al. 1974). It 
is also use to determine cholesterol from low-density lipo-
protein to high-density lipoprotein, on the cell membrane of 
erythrocytes (and of other cells and cellular compartments), 
in gall stone and in human bile. The level of cholesterol in 
blood range from less than 50 mg/dL in infants to an ave-
rage of 215 mg/dL in adults and to 1,200 mg/dL or more in 
individuals suffering from a rare, inherited disorder called 
familial hyper-cholesterolemia. Total cholesterol is the sum 
of HDL cholesterol, LDL cholesterol and 20% of the tri-
glycerides values. Using the various values, one can calcu-
late a cardiac risk ratio is equal to total cholesterol divided 
by HDL cholesterol. A cardiac risk ratio greater than 7 is 
considered a warning (Marian 2007). 

The risk for Alzheimer disease is also related to hyper-
cholesterolemia via mechanisms involving oxidative stress, 
this disease is characterized by the accumulation of amyloid 
�-peptide (a 39-43 amino acid peptide) in the neocortex, 
which is connected to peroxidative damage. The amyloid �-
peptide forms complexes with Cu2+ ions, which oxidize 
cholesterol into cholest-4-en-3-one, thus mimicking the 
activity of COx. In fact, brain tissues from Alzheimer dis-
ease patients had a cholest-4-en-3-one content approxi-
mately 2-fold higher than brain tissues from controls. A 
different method for determining serum cholesterol has also 
been reported (Pollegioni et al. 2009). Another use of the 
COx enzyme is in the microanalysis of steroids in food 
specimens for determining the stearic configuration of 3-
ketosteroids from their corresponding 3�-hydroxysteroids. 

 
6. Cholesterol biosensor 
 
COx with cholesterol esterase and peroxidase has been co-
immobilized onto electrochemically prepared polyaniline 
films. These polyaniline-enzyme films characterized using 
spectroscopic techniques, have been used to fabricate a 
cholesterol biosensor (Singh et al. 2005). They have also 
co-immobilized COx and cholesterol esterase onto tetra-
ethylorthosilicate (TEOS) sol-gel films for cholesterol bio-
sensor (Singh et al. 2007). The cholesterol immobilized on 
a nylon membrane was used to build a fiberoptic biosensor 
based on the change in fluorescence of an oxygen-sensitive 
dye (Ishizaki et al. 1989). Cholesterol biosensor based on 
the electrochemical reduction of oxygen was subsequently 
developed by using bilayer-film coating; this sensor is less 
sensitive to organic interferences (Solaiman and Somkuti 
1981). An amperometric biosensor was also obtained by 
reconstituting the apoprotein of Pseudomonas flurorescence 
COx with FAD monolayer (Solaiman and Somkuti 1997). 
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CONCLUSION 
 
In recent times, COx has rapidly become an enzyme of 
great interest due to its different biological applications. 
The present review highlights different applications of cho-
lesterol oxidase and its role in pathogenicity. The broad 
range of clinical and industrial applications of COx has 
generated a renewed interest in exploring various natural 
habitat/environments for discovering newer microbial sour-
ces as potential producers of this enzyme. 
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