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ABSTRACT 
The discovery, isolation, purification, and molecular structure characterization of six fagopyritols found in common buckwheat 
(Fagopyrum esculentum Moench) seeds and milling fractions are described. The proposed roles of fagopyritols in seed maturation, seed 
desiccation tolerance, agronomic seed performance, and human health are outlined. The similarities in molecular structure of fagopyritols 
to a putative insulin mediator related to non-insulin dependent diabetes mellitus and polycystic ovary syndrome are described. The 
characterization of genes encoding enzymes capable of synthesizing buckwheat fagopyritols is highlighted. 
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INTRODUCTION 
 
Common buckwheat (Fagopyrum esculentum Moench) is 
an under-utilized crop (Marshall and Pomeranz 1982) 
known for its rich source of nutrients and health-related 
components in its edible seeds (Pomeranz 1983; Horbowicz 
and Obendorf 1992; Obendorf et al. 1993; Steadman et al. 
2000, 2001a, 2001b; Li and Zhang 2001; Krkošková and 
Mrázová 2005; Christa and Soral-Smietana 2008). Unlike 
most seeds, buckwheat contains only small amounts of 
raffinose and stachyose, but instead accumulates mostly 
sucrose and galactosides of D-chiro-inositol, called fago-

pyritols after the species name Fagopyrum, as seed soluble 
carbohydrates (Horbowicz and Obendorf 1994; Horbowicz 
et al. 1998; Szczeci�ski et al. 1998; Obendorf et al. 2000; 
Steadman et al. 2001c; Horbowicz and Obendorf 2005). 
The chemical structures and biosynthesis of fagopyritols, as 
well as their health-related potential, are reviewed. 
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CHEMISTRY 
 
Chemical structures and nomenclature of myo-
inositol and chiro-inositol 
 
Two cyclic sugar alcohols called cyclitols, myo-inositol 
(cis-1,2,3,5-trans-4,6-cyclohexanehexol) and D-chiro-inosi-
tol (cis-1,2,4-trans-3,5,6-cyclohexanehexol), are found in 
common buckwheat tissues. The six carbons of the myo-
inositol ring are numbered in counter-clockwise direction 
(Fig. 1, top left) representing D-myo-inositol or in the clock-
wise direction (Fig. 1, top right) representing L-myo-inositol. 
In the absence of additional linkage groups to hydroxyl 
positions on the six-carbon myo-inositol ring, D-myo-inosi-
tol and L-myo-inositol represent the same compound called 
myo-inositol (Fig. 1, top center). However, when a hydroxyl 
position on a carbon in the myo-inositol ring has a linked 
group, such as a methyl ether (O-methyl) group as in D-
ononitol (1D-4-O-methyl-myo-inositol) (Fig. 1, center), the 
car-bon with the attached linkage must be identified by the 
D- or L- numbering system. D-Ononitol is numbered in the 
D-direction to give the smallest number. D-chiro-Inositol 
(Fig. 1, bottom left) is numbered in counter-clockwise 
direction, whereas L-chiro-inositol (Fig. 1, bottom right) is 
numbered in the clockwise direction. chiro-Inositol is a 
symmetrical compound; therefore, linkage to the hydroxyl 
position on carbon-1 or on carbon-6 results in the same 
compound. Similarly, linkage to the hydroxyl position on 
carbon-2 or on carbon-5 results in the same compound, and 
linkage to the hydroxyl position on carbon-3 or on carbon-4 
results in the same compound (reviewed by Horbowicz and 
Obendorf 1994). 

In legumes, myo-inositol is converted to D-pinitol (1D-
3-O-methyl-chiro-inositol) (Fig. 1, bottom center) through 
D-ononitol as an intermediate compound (Dittrich and 
Brandl 1987; reviewed by Horbowicz and Obendorf 1994). 

In higher plants, it has been proposed that D-chiro-inositol 
is synthesized by demethylation of D-pinitol (Scholda et al. 
1964; reviewed by Hoffman-Ostenhoff and Pittner 1982 
and Horbowicz and Obendorf 1994), but an enzyme for this 
reaction has not been identified. Neither D-ononitol, nor 
other O-methyl cyclitols have been detected in buckwheat 
(Horbowicz and Obendorf 1994; Horbowicz et al. 1998; 
Horbowicz and Obendorf 2005). In leaves of buckwheat 
(Ma et al. 2005) and soybean (Glycine max (L.) Merrill) 
(Gomes et al. 2005), D-chiro-inositol is synthesized from 
myo-inositol, most likely with 1D-myo-inosose-1 as an inter-
mediate compound (Fig. 1, top left to middle left to bottom 
left). Trifolium incarnatum L. leaves also can synthesize D-
chiro-inositol from 1D-myo-inosose-1 (Scholda et al. 1964) 
(Fig. 1, top center to center to bottom center). Chlorella can 
synthesize D-chiro-inositol from myo-inositol without the 
formation of methyl ether intermediates (Woeber and Hoff-
mann-Ostenhof 1969; Woeber et al. 1971). The conversion 
of myo-inositol to D-chiro-inositol also has been reported in 
microbial (L’Annunziata et al. 1977; Yoshida et al. 2006) 
and animal systems (Hipps et al. 1973; Pak et al. 1992, 
1993). The conversion of myo-inositol to D-chiro-inositol is 
reduced in type 2 diabetic (NIDDM) rats compared to con-
trol rats (Sun et al. 2002). However, another study con-
cludes that D-chiro-inositol is neither synthesized endoge-
nously nor converted from myo-inositol in rodents (Lin et al. 
2009b), although both D-pinitol (1D-3-O-methyl-chiro-ino-
sitol) and D-chiro-inositol are readily absorbed from dietary 
sources and appear to be solely derived from the diet (Lin et 
al. 2009b). 

 
Chemical structures and nomenclature of 
fagopyritols 
 
Fagopyritols are mono-, di-, or tri- �-galactosides of D-
chiro-inositol. Six fagopyritols in two distinct series (Figs. 
2, 3) are present in embryo tissues of common buckwheat 
seeds. In the fagopyritol B series (Fig. 2), the �-galactoside 
linkage is to the 2-carbon of D-chiro-inositol yielding fago-
pyritol B1 [�-D-galactopyranosyl-(1�2)-1D-chiro-inositol], 
fagopyritol B2 [�-D-galactopyranosyl-(1�6)-�-D-galacto-
pyranosyl-(1�2)-1D-chiro-inositol], and fagopyritol B3 [�-
D-galactopyranosyl-(1�6)-�-D-galactopyranosyl-(1�6)-�-
D-galactopyranosyl-(1�2)-1D-chiro-inositol] (Szczeci�ski 
et al. 1998; Obendorf et al. 2000; Steadman et al. 2001c). 
In the fagopyritol A series (Fig. 3), the �-galactoside lin-
kage is to the 3-carbon of D-chiro-inositol yielding fago-
pyritol A1 [�-D-galactopyranosyl-(1�3)-1D-chiro-inositol], 
fagopyritol A2 [�-D-galactopyranosyl-(1�6)-�-D-galacto-
pyranosyl-(1�3)-1D-chiro-inositol], and fagopyritol A3 [�-
D-galactopyranosyl-(1�6)-�-D-galactopyranosyl-(1�6)-�-
D-galactopyranosyl-(1�3)-1D-chiro-inositol] (Obendorf et 
al. 2000; Steadman et al. 2001c). Horbowicz and Obendorf 
(1994) reviewed the nomenclature rules and some common 
mistakes in naming cyclitols and galactosyl cyclitols. All 
known fagopyritol structures, except fagopyritol B3, were 
confirmed by NMR spectral analysis (Szczeci�ski et al. 
1998; Obendorf et al. 2000; Steadman et al. 2001c). The 
fagopyritol B3 structure was deduced from analysis of 
hydrolysis products (Steadman et al. 2001c) and recently 
has been confirmed by analysis of its NMR spectra (Gui W, 
Lemley BA, Keresztes I, Condo Jr. AM, Steadman KJ, 
Obendorf RL 2009 unpublished). 

In addition to fagopyritols, buckwheat seeds also con-
tain galactosides of myo-inositol, including galactinol [�-D-
galactopyranosyl-(1�1)-L-myo-inositol, also known as �-
D-galactopyranosyl-(1�3)-D-myo-inositol], digalactosyl 
myo-inositol [DGMI; �-D-galactopyranosyl-(1�6)-�-D-
galacto-pyranosyl-(1�1)-l-myo-inositol], and trigalactosyl 
myo-inositol [TGMI; �-D-galactopyranosyl-(1�6)-�-D-
galactopyranosyl-(1�6)-�-D-galactopyranosyl-(1�1)-L-
myo-inositol] (Fig. 4). The structures of myo-inositol 
(Brown and Serro 1953) and galactinol (Brown and Serro 
1953; Noguchi et al. 2000) have been confirmed. Recently, 
the structures of digalactosyl myo-inositol and trigalactosyl 
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Fig. 1 Structures of myo-inositol and chiro-inositol, some related cycli-
tols, and the proposed biosynthetic intermediate product 1D-myo-
inosose-1. 
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Fig. 2 Structures of galactosides of D-chiro-inositol of the fagopyritol B series including D-chiro-inositol, fagopyritol B1 (�-D-galactopyranosyl-
(1�2)-1D-chiro-inositol), fagopyritol B2 (�-D-galactopyranosyl-(1�6)-�-D-galactopyranosyl-(1�2)-1D-chiro-inositol), and fagopyritol B3 (�-D-
galactopyranosyl-(1�6)-�-D-galactopyranosyl-(1�6)-�-D-galactopyranosyl-(1�2)-1D-chiro-inositol). 

 
Fig. 3 Structures of galactosides of D-chiro-inositol of the fagopyritol A series including fagopyritol A1 (�-D-galactopyranosyl-(1�3)-1D-chiro-
inositol), fagopyritol A2 (�-D-galactopyranosyl-(1�6)-�-D-galactopyranosyl-(1�3)-1D-chiro-inositol), and fagopyritol A3 (�-D-galactopyranosyl-
(1�6)-�-D-galactopyranosyl-(1�6)-�-D-galactopyranosyl-(1�3)-1D-chiro-inositol). 
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myo-inositol have been confirmed by analysis of their NMR 
spectra (Gui W, Lemley BA, Keresztes I, Condo Jr. AM, 
Steadman KJ, Obendorf RL 2009 unpublished). 

 
Analytical methods 
 
The methods for quantitative analysis of soluble carbo-
hydrates have been reviewed (Kadlec et al. 2001; Obendorf 
et al. 2012). Sources of cyclitol galactosides, that are not 
available commercially, have been identified for use as ref-
erence compounds during analysis of soluble carbohydrates 
(Kadlec et al. 2001). High resolution gas chromatography 
(GC) is a favored method for analysis of soluble carbo-
hydrates following their conversion to volatile trimethyl-
silyl (TMS) derivatives (Traitler et al. 1984; Horbowicz and 
Obendorf 1994; Obendorf et al. 1998; Kadlec et al. 2001; 
Gomes et al. 2005; Obendorf et al. 2009, 2012). In this 
method, 20 or more soluble carbohydrates that occur in 
plant tissues can be extracted, separated, and determined in 
a single assay (Fig. 5). Some capillary GC columns can 
separate with high resolution the TMS-carbohydrates from 
seed extracts within 15 min (Obendorf et al. 2012). Samples 
for GC analysis are extracted with ethanol-water (1:1, v/v), 
and the applied solvents are evaporated under a stream of 
nitrogen gas, followed by drying over P2O5 overnight to 
remove traces of water. If extracts are concentrated in a 
rotary speed evaporator, keep temperatures at 40°C or lower 
to minimize the potential for artifacts. Dry samples are 
derivatized with trimethylsilylsilimidazole (TMSI):pyridine 
(1:1, v/v) forming trimethylsilyl (TMS) derivatives at hyd-
roxyl groups on the cyclitol and sugar. Drying is critical for 
complete derivatization, due to the rapid breakdown of the 

silylation reagent by traces of water. Separation of deriva-
tized carbohydrates is commonly performed on a DB-1 
(Supelco), an HP1-MS (Agilent Technologies) (15 m length, 
0.25 mm inside diameter, 0.25 μm film thickness), or a 
Zebron ZB-1 (Phenomenex) glass capillary column (15 m 
length, 0.25 mm inside diameter, 0.10 μm film thickness, 
100% dimethylpolysiloxane) and detected by a flame-
ionization-detector (FID) or a mass spectra detector (GC-
MS). GC analysis of soluble carbohydrates is sensitive and 
efficient. However, columns are commonly operated at near 
maximum temperatures for long periods of time (>40 min if 
using columns with 0.25 μm film thickness) especially for 
analysis of oligosaccharides with three to five rings (e.g., 3-
5 mers or degrees of polymerization). For analysis of larger 
oligomers, liquid chromatography (HPLC) may be 
preferred, but sensitivity and resolution may be somewhat 
less with HPLC than with GC depending on the specific 
compounds being analyzed (Kadlec et al. 2001). The GC 
method outlined above for small molecular weight soluble 
carbohydrates does not efficiently separate nor detect 
charged compounds (zwitter ions, organic acids, amino 
acids, phosphorylated sugars or cyclitols) or their salts. Tri-
methylsilyl derivatives of glucose, fructose, galactose, and 
maltose capture the anomeric forms of the sugars as distinct 
TMS products (Fig. 3; Horbowicz and Obendorf 1994; 
Horbowicz et al. 1998). Acid (3 N trifluoroacetic acid) or 
enzyme (�-galactosidase) hydrolysis of fagopyritols, fol-
lowed by GC analysis of the hydrolysis products, are useful 
for determination of the number and ratio of monomeric 
components and provides evidence of the �-linkages 
between monomeric components. Chiral capillary columns 
(Leavitt and Sherman 1982) have been used to distinguish 

 
Fig. 4 Structures of the galactinol series compounds including L-myo-inositol, galactinol [�-D-galactopyranosyl-(1�1)-L-myo-inositol; also known 
as �-D-galactopyranosyl-(1�3)-D-myo-inositol], digalactosyl myo-inositol [DGMI; �-D-galactopyranosyl-(1�6)-�-D-galactopyranosyl-(1�1)-L-
myo-inositol], and trigalactosyl myo-inositol [TGMI; �-D-galactopyranosyl-(1�6)-�-D-galactopyranosyl-(1�6)-�-D-galactopyranosyl-(1�1)-L-
myo-inositol]. 
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the enantiomers D-chiro-inositol and L-chiro-inositol 
(Szczeci�ski et al. 1998; Obendorf et al. 2000; Steadman et 
al. 2001c) which typically co-chromatograph on most other 
columns. 

 
Optical rotation values of selected free cyclitols 
and cyclitol galactosides 
 
Optical rotation is sometimes used as one of several pro-
perties to identify a compound or the purity of a compound. 
Optical rotation values are expressed as: [�]D

20, where � is 
the value of optical rotation in degrees (°), subscript “D” is 
the concentration of chemical in grams per 100 milliliters of 
solvent, and superscript “20” is the temperature in °C. 
Information was assembled on optical rotation of fagopyri-
tols and related cyclitols and galactosyl cyclitols (Table 1). 
In literature sources, only free cyclitols were crystalline 
(except pinpollitol). The galactosyl cyclitols generally form 
a white powder after freeze drying. Many were reported to 
be a colorless solid (probably means glass-like, not crystal). 
Therefore, melting points are not easily established and are 
reported infrequently and usually as broad ranges. 

Some observed trends may be summarized as follows. 
D-chiro-Inositol and d-pinitol (with one O-methyl) are simi-
lar at +63° to +65° (Schweizer et al. 1978; Baumgartner et 
al. 1986) (Table 1). Adding a second O-methyl group (i.e., 
pinpollitol) is slightly lower at +50° (Angyal et al. 1976). 
myo-Inositol is optically inactive (no optical rotation). The 
D-ononitol value (+6.4°) (Binder and Haddon 1984; Richter 
et al. 1997) is low as expected from the myo-inositol ring. 
L-Bornesitol values (+32.05°, +34.8°) (Foster and Stacey 
1953; Loewus FA 1994 unpublished) and D-bornesitol val-
ues (–26.4°, –28.4°, and –32.05°) (Bien and Ginsburg 1958; 
Ichimura et al. 1999; Obendorf et al. 2005) are higher than 
D-ononitol (note the reversal in direction of rotation for 
bornesitol). Our unpublished data for fagopyritol B1 
(+166°) is similar to the value (+170°) obtained by Schwei-
zer and Horman (1981). Galactinol and galactosyl ononitol 
(both myo-inositol containing) are +135.6° (Brown and 
Serro 1953) and +129.6° (Richter et al. 1997), whereas 
lathyritol, a galactosyl D-bornesitol, is +96.55° (Obendorf et 
al. 2005), consistent with D-bornesitol being levorotary. 
Digalactosyl ononitol is +162.5° (Peterbauer et al. 2003), a 
value higher than monogalactosyl ononitol, and similar to 
fagopyritol A2 (+165°) (Lewis BA and Obendorf RL 2000 
unpublished). Galactopinitol A and trigalactopinitol A are 
similar at +181° and +179° (Schweizer and Horman 1981; 
Nicolas et al. 1984). Galactopinitol B is slightly lower at 
+159° (Schweizer and Horman 1981). Values for ciceritol (a 
digalactosyl pinitol A), trigalactosyl pinitol B, fagopyritol 
B3, or di- and tri-galactosyl myo-inositol have not been 
reported. 

 
Methods of isolation and purification 
 
Methods of isolation and purification of the fagopyritols 
have been reported (Horbowicz and Obendorf 1994; Horbo-
wicz et al. 1998; Szczeci�ski et al. 1998; Obendorf et al. 
2000; Steadman et al. 2001c; Horbowicz and Obendorf 
2005). Mature dry seeds, seed parts, or seed milling frac-
tions are ground to a fine powder. Small wet samples, or 
plant tissues containing oil, are frozen in liquid nitrogen and 
ground to a fine powder in a mortar pre-chilled with liquid 
nitrogen. Fagopyritols and other soluble carbohydrates are 
extracted from the pulverized sample with ethanol:water, 
1:1 (v/v), and solvents are evaporated by freeze drying. The 
obtained residues are dissolved in a small amount of water 
forming a concentrated extract. The concentrated extract is 
placed on a carbon-Celite (1:1, v/v; Whistler and Durso 
1950) column (100 mm × 180 mm bed volume). The col-
umn is eluted with water followed by increasing concen-
trations of ethanol in water (Fig. 6). D-chiro-Inositol and 
myo-inositol are eluted from the column with water, fruc-
tose and glucose are eluted with 2% ethanol, fagopyritol B1 
is eluted with 4% ethanol, fagopyritol A1 is eluted with 5% 

ethanol, fagopyritol B2 is eluted with 10% ethanol, fago-
pyritol A2 is eluted with 14% ethanol, fagopyritol B3 is 
eluted with 20% ethanol, and fagopyritol A3 is eluted with 
50% ethanol (Fig. 6). The obtained fractions (500 ml) are 
freeze-dried, concentrated in a small amount of water, 
filtered, dried, re-dissolved, and assayed for compositional 
analysis by GC (Fig. 5). Samples containing compounds of 
interest are pooled, re-chromatographed on a 25 mm x 900 
mm bed of charcoal:Celite, and eluted with stepwise 
increases in ethanol concentration. Fractions containing a 
fagopyritol of interest are pooled and re-chromatographed 
as needed to provide an essentially pure (>95%) fagopyritol 
after freeze drying. The purified fagopyritols form a white 
powder, but not crystals, when dried. 
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Chemical synthesis 
 
Chemical synthesis of D-chiro-inositol and other inositols 
has been reviewed (Duchek et al. 2011). Fagopyritol B1 
and fagopyriol A1 have been chemically synthesized (Kor-
nienko et al. 1998; Cid et al. 2004). Reports of a partially 
characterized rat liver putative insulin mediator that 
contains galactosamine and D-chiro-inositol (Larner et al. 
1988), partially characterized human liver putative insulin 
mediators (Caro et al. 1997), and a beef liver putative insu-
lin mediator that contains a galactosamine D-pinitol man-
ganese chelate (Larner et al. 2003) stimulated the synthesis 
of a number of related compounds (Berlin et al. 1990, 1991; 
Bonilla et al. 2002; Cid et al. 2002, 2003; Hart et al. 2001, 
2004). The naturally occurring fagopyritol A1 with its 
unique �-(1�3)-linkage (Obendorf et al. 2000) is isosteric 
with 2-amino-2-deoxy-�-D-galactopyranosyl-(1�3)-D-
chiro-inositol related to a putative insulin mediator (Berlin 
et al. 1990). 

 
PHYSIOLOGY 
 
Occurrence in plants 
 
D-chiro-Inositol is present in leaves (Ma et al. 2005; Kosina 
et al. 2009) and seed embryos (Horbowicz and Obendorf 
1994; Horbowicz et al. 1998; Gomes et al. 2005; Horbo-
wicz and Obendorf 2005; Kosina et al. 2009, 2010) of 
common buckwheat and some legume plants and in citrus 
juice (mandarin, orange, grapefruit, lime, lemon) (Sanz et al. 

2004). D-chiro-Inositol is synthesized in leaves of common 
buckwheat and soybean (Ma et al. 2005; Kosina et al. 
2009) and perhaps other maternal tissues, is transported to 
seeds, is unloaded by seed coats (Ma et al. 2005; Kosina et 
al. 2009, 2010), and is absorbed by the embryos where it is 
stored primarily as fagopyritols, galactosides of D-chiro-
inositol, in maturing seeds (Horbowicz and Obendorf 1994; 
Horbowicz et al. 1998; Obendorf et al. 1998; Szczeci�ski et 
al. 1998; Obendorf et al. 2000; Steadman et al. 2000, 
2001c; Horbowicz and Obendorf 2005; Obendorf et al. 
2009). L-chiro-Inositol, or galactosides of L-chiro-inositol, 
is rarely present in plants or seeds and is not detectable in 
buckwheat seeds (Szczeci�ski et al. 1998; Obendorf et al. 
2000; Steadman et al. 2001c). Fagopyritol B1 is present in 
seeds of soybean, lupin, pigeon pea, cowpea, lentil, castor 
bean, and jojoba bean (Schweizer and Horman 1981; Hor-
bowicz and Obendorf 1994; Górecki et al. 1997; Ogawa et 
al. 1997), and fagopyritol B2 is in sugar beet (Beta vulgaris 
L.), buckwheat, and other seeds (Shiomi et al. 1988; Hor-
bowicz and Obendorf 1994; Górecki et al. 1997). Fagopyri-
tol B3 is present in seeds of buckwheat (Steadman et al. 
2000, 2001c) and certain genotypes of soybean (Obendorf 
et al. 2009) in small amounts. Fagopyritol A1, fagopyritol 
A2, and fagopyritol A3 are present only in buckwheat seeds 
(Horbowicz and Obendorf 1994; Horbowicz et al. 1998; 
Szczeci�ski et al. 1998; Obendorf et al. 2000; Steadman et 
al. 2000, 2001c; Horbowicz and Obendorf 2005). 

 
 
 

Table 1 Optical rotation values reported for selected cyclitols and their galactosides. 
Cyclitol, O-methyl cyclitol, or galactosyl cyclitol Optical rotation values References 
D-chiro-Inositol [�]D

20 +65° (c 0.1, water) Schweizer et al. 1978 
D-Pinitol 
[1D-3-O-methyl-chiro-inositol] 

[�]D
20 +63° (c ??, water) 

[�]D
20 +64.5° (c 500, water) 

Schweizer et al. 1978 
Baumgartner et al. 1986 

Pinpollitol 
[1D-1,4-di-O-methyl-chiro-inositol] 

[�]D
22.5 +50°(c 0.79, methanol) Angyal et al. 1976 

myo-Inositol Optically inactive  
D-Ononitol 
[1D-4-O-methyl-myo-inositol] 

[�]D
20 +6.55° (c ?, water) 

[�]D
20 +6.4° (c 0.5, water) 

Binder and Haddon 1984 
Richter et al. 1997 

D-Bornesitol 
[1D-1-O-methyl-myo-inositol] 

[�]D
18 –32.05° (c 3.5, water) 

[�]D
30 –26.4° (c 0.5, water) 

[�]D
23 –28.4° (c 0.76, water) 

Bien and Ginsburg 1958 
Ichimura et al. 1999 
Obendorf et al. 2005 

L-Bornesitol 
[1L-1-O-methyl-myo-inositol] 

[�]D +32.05° (c 0.8, water) 
[�]D

28 +34.8° (c ?, solv ?) 
Foster and Stacey 1953 
Loewus FA 1994 unpub. data 

Fagopyritol B1 
[�-D-galactopyranosyl-(1�2)-1D-chiro-inositol] 

[�]D
23 +170° (c 0.2, water) 

[�]D
20 +166° (c 0.6, water) 

Schweizer and Horman 1981 
Lewis BA and Obendorf RL 2000 
unpublished data 

Fagopyritol B2 
[�-D-galactopyranosyl-(1�6)-�-D-galactopyranosyl-(1�2)-1D-chiro-inositol] 

[�]D
20 +149° (c 0.3, water) 

 
Lewis BA and Obendorf RL 2000 
unpublished data 

Fagopyritol A1 
[�-D-galactopyranosyl-(1�3)-1D-chiro-inositol] 

[�]D
22 +141° (c 0.2, water) Lewis BA and Obendorf RL 2000 

unpublished data 
Fagopyritol A2 
[�-D-galactopyranosyl-(1�6)-�-D-galactopyranosyl-(1�3)-1D-chiro-inositol] 

[�]D
22 +165° (c 0.2, water) Lewis BA and Obendorf RL 2000 

unpublished data 
Fagopyritol A3 
[�-D-galactopyranosyl-(1�6)-�-D-galactopyranosyl-(1�3)-1D-chiro-inositol] 

[�]D
18 +144° (c 0.2, water) Lewis BA and Obendorf RL 2000 

unpublished data 
Galactopinitol A 
[�-D-galactopyranosyl-(1�2)-1D-4-O-methyl-chiro-inositol] 

[�]D
23 +181° (c 0.2, water) Schweizer and Horman 1981 

Trigalactopinitol A 
[�-D-galactopyranosyl-(1�6)-�-D-galactopyranosyl-(1�6)-�-D-galactopyranosyl-
(1�2)-1D-4-O-methyl-chiro-inositol] 

[�]D
23 +179° (c 0.5, water) Nicolas et al. 1984 

Galactopinitol B 
[�-D-galactopyranosyl-(1�2)-1D-3-O-methyl-chiro-inositol] 

[�]D
23 +159° (c 0.2, water) Schweizer and Horman 1981 

Galactinol 
[�-D-galactopyranosyl-(1�1)-1L-myo-inositol] 

[�]D
20 +135.6° (c ?, solv ?) Brown and Serro 1953 

Galactosyl ononitol 
[�-D-galactopyranosyl-(1�3)-1D-4-O-methyl-myo-inositol] 

[�]D
20 +129.6° (c 0.5, water) Richter et al. 1997 

Digalactosyl ononitol 
[�-D-galactopyranosyl-(1�6)- 
�-D-galactopyranosyl-(1�3)-1D-4-O-methyl-myo-inositol] 

[�]D
20 +162.5° (c 0.2, water) Peterbauer et al. 2003 

Lathyritol (galactosyl D-bornesitol) 
[�-D-galactopyranosyl-(1�3)-1D-1-O-methyl-myo-inositol] 

[�]D
23 +96.55° (c 1.45, water) Obendorf et al. 2005 
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Role in plants 
 
In contrast to maturing embryos of many plant seeds that 
accumulate sucrose and the raffinose family of oligosac-
charides (RFO), such as raffinose, stachyose and verbascose, 
as the predominant soluble sugars (Kuo et al. 1988; 
Horbowicz and Obendorf 1994), embryos of maturing com-
mon buckwheat seeds accumulate fagopyritols, galactosyl 
derivatives of D-chiro-inositol (Horbowicz and Obendorf 
1994; Horbowicz et al. 1998; Szczeci�ski et al. 1998; 
Obendorf et al. 2000; Steadman et al. 2000, 2001c; Horbo-
wicz and Obendorf 2005). Fagopyritols accumulate in 
embryo tissues during seed maturation (12 to 20 days after 
pollination of common buckwheat; embryo dry weight is 
maximum at 18 days after pollination) (Horbowicz et al. 
1998), and fagopyritol accumulation is associated with the 
onset of seed desiccation tolerance in buckwheat (Horbo-
wicz et al. 1998) and other seeds including soybean (Oben-
dorf et al. 1998, 2009). Soybean seeds expressing the 
mutant stc1 gene with low raffinose and stachyose (Hitz et 
al. 2002), accumulate fagopyritols to higher concentrations, 
especially fagopyritol B2 and fagopyritol B3 (Obendorf et 
al. 2009), tolerate imbibitional chilling injury (Obendorf et 
al. 2008), and have normal field emergence (Neus et al. 
2005). Because fagopyritols accumulate during seed matu-
ration, they are also seed reserve soluble carbohydrates. 
There is no evidence that fagopyritols accumulate in plant 
tissues other than seeds. Fagopyritols are proposed to sub-
stitute for the role of raffinose family oligosaccharides in 
seed desiccation tolerance (Horbowicz and Obendorf 1994; 
Obendorf et al. 2008). Fagopyritols (36.2 mg L-1), D-chiro-
inositol (2.6 mg L-1), and myo-inositol (8.9 mg L-1) have 
been reported to be present in concentrated extracts of 
Momordica charantia fruits (Xia and Wang 2007). However, 
the fagopyritols were not identified nor was galactinol re-
ported. It is unclear if the fagopyritols were present in fruit 
tissues or in seeds contained within the fruits. 

 
Factors affecting accumulation of fagopyritols 
 
Fagopyritols accumulate during rapid growth of buckwheat 
embryos during seed formation (Horbowicz et al. 1998; 
Horbowicz and Obendorf 2005). Fagopyritol A1 and fago-
pyritol B1 accumulations are favored by cool temperatures, 
and the higher oligomers, fagopyritol A2, fagopyritol B2, 
fagopryitol A3, and fagopyritol B3 are favored by higher 
temperatures (Horbowicz and Obendorf 2005) during seed 
maturation. Increasing the supply of D-chiro-inositol to 
seeds increases the accumulation of fagopyritols in mature 
seeds of buckwheat (Ma et al. 2005) and other plants 
(Obendorf et al. 2004; Gomes et al. 2005; Obendorf and 
Kosina 2011) including those that normally do not accumu-
late D-chiro-inositol (Lahuta et al. 2005a, 2005b, 2010; 
Lahuta and Goszczy�ska 2010; Lahuta and Dzik 2011). 

 
BIOSYNTHESIS 
 
Biosynthetic pathways 
 
Glucose-6-phosphate is a substrate for the biosynthesis of 
myo-inositol and other cyclitols. myo-Inositol phosphate 
synthase (EC 5.5.1.4) converts glucose-6-phosphate to myo-
inositol-1-phosphate, which in turn is transformed to myo-
inositol by myo-inositol-1-phosphate phosphatase (EC 
3.1.3.25) (Górecki et al. 2001). myo-Inositol is a precursor 
to many other cyclitols, including D-chiro-inositol. In leaves 
of higher plants, the enzyme that converts myo-inositol to 
D-chiro-inositol is unknown, but it is proposed to be a two-
step oxidoreductase reaction with 1D-myo-inosose-1 as an 
intermediate (Fig. 1, Horbowicz and Obendorf 1994; Oben-
dorf 1997). D-chiro-Inositol is transported from leaves to 
seeds where it is stored as fagopyritols. D-chiro-Inositol is 
not synthesized in seeds, and fagopyritols are not synthe-
sized in leaves. 

Until the last decade, very little has been known about 

the enzymes, fagopyritol synthases, that catalyze the syn-
thesis of fagopyritols in buckwheat. Obendorf et al. (2004) 
hypothesized two possible enzymatic reactions for fago-
pyritol synthase: (1) like galactinol synthase (GolS, UDP-
galactose:myo-inositol galactosyltransferase; EC 2.4.1.123) 
it may use UDP-galactose (UDP-Gal) as the galactosyl 
donor and D-chiro-inositol as the galactosyl acceptor to syn-
thesize fagopyritols (Frydman and Neufeld 1963), or (2) 
like stachyose synthase (STS), galactinol:raffinose galacto-
syltransferase; EC 2.4.1.67) it may use galactinol (�-D-
galactopyranosyl-(1�1)-L-myo-inositol) as the galactosyl 
donor and D-chiro-inositol as the galactosyl acceptor to syn-
thesize fagopyritols (Hoch et al. 1999). It has been reported 
that pea (Pisum sativum L.) seed GolS (Frydman and 
Neufeld 1963) and lentil (Lens culinaris L.) STS (Hoch et 
al. 1999) can form a product with D-chiro-inositol as sub-
strate, although the product has not been confirmed to be a 
fagopyritol. The lack of activity of adzuki bean (Vigna 
angularis Ohwi et Ohashi) STS with D-chiro-inositol 
(Peterbauer and Richter 1998) and the very limited accumu-
lation of stachyose in buckwheat seeds (Horbowicz and 
Obendorf 1994; Horbowicz et al. 1998) suggests that STS 
is not involved in the synthesis of fagopyritols in buckwheat. 
Ueda et al. (2005) favored the first reaction based on their 
observations from two preliminary in vitro enzyme assays 
using the crude enzyme extracts from immature embryos 
harvested at 20 days after pollination or from buckwheat 
bran prepared from mature dry seeds. First, no fagopyritol 
synthesis was detected in the assays when galactinol was 
used as the galactosyl donor. Second, when UDP-Gal was 
used as the galactosyl donor, fagopyritol B1 synthesis was 
detected, suggesting that fagopyritol synthase may have 
homology to GolS. 

Based on the assumption that the multifunctional en-
zyme galactinol synthase (GolS, UDP-galactose:myo-inosi-
tol galactosyltransferase, EC 2.4.1.123) may have homol-
ogy to the enzyme responsible for the synthesis of fago-
pyritols, a total of three different cDNA clones, two full-
length and one partial, encoding GolS homologues have 
been obtained through reverse transcriptase polymerase 
chain reaction (RT-PCR) and rapid amplification of cDNA 
ends (RACE)-PCR assays using mRNA extracted from 
buckwheat seeds and degenerate oligonucleotide primers 
specific for galactinol synthase genes (Ueda et al. 2005). 
The two full-length cDNAs, designated as FeGolS-1 
(GenBank accession number AY126718) and FeGolS-2 
(GenBank accession number AY126716) are 1269 bp and 
1326 bp in length and encode polypeptides of 38.3 kDa and 
40.7 kDa, respectively. According to the deduced amino 
acid sequences, FeGolS-1 and FeGolS-2 share a high level 
of sequence similarity with GolSs in other plant species. 
However, FeGolS-2 and the partial cDNA clone FeGolS-3 
(GenBank accession number AY126717) contain a unique 
insertion of 17 or 18 amino acid residues near the carboxyl 
terminus, respectively, which is absent in FeGolS-1 and 
other GolSs (Ueda et al. 2005). 

Recombinant proteins have been prepared from E. coli 
by the bacterial expression of the two full-length FeGolS-1 
and FeGolS-2 cDNAs. The in vitro enzyme assays per-
formed with the recombinant proteins have confirmed that 
both FeGolS-1 and FeGolS-2 proteins exhibit GolS acti-
vities in the presence of UDP-galactose as galactosyl donor 
and myo-inositol as galactosyl acceptor. Furthermore, in the 
presence of UDP-galactose as galactosyl donor and D-chiro-
inositol as galactosyl acceptor, FeGolS-1 catalyzes the syn-
thesis of fagopyritol B1 whereas FeGolS-2 catalyzes the 
synthesis of both fagopyritol A1 and fagopyritol B1 in a 1:4 
mole ratio which coincides with the observed mole ratio 
(1:4.4) for accumulated fagopyritol A series oligomers to 
accumulated fagopyritol B series oligomers in maturing 
embryos (Horbowicz and Obendorf 1994; Horbowicz et al. 
1998). Thus, FeGolS-2 is capable of catalyzing the for-
mation of the �-(1�3)-linkage unique to the fagopyritol A 
series as well as the �-(1�2)-linkage of the fagopyritol B 
series in buckwheat (Ueda et al. 2005). Under the cor-
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responding conditions, the recombinant soybean GolS 
protein (GmGolS, AY126715) can synthesize fagopyritol 
B1 but not fagopyritol A1 (Obendorf et al. 2004). An 
enzyme(s) that adds additional galactosyl residues, forming 
fagopyritol B2, fagopyritol B3, fagopyritol A2, and fago-
pyritol A3, is not known but is assumed to be a multifunc-
tional stachyose synthase or a similar enzyme. 

The findings summarized above demonstrate that multi-
functional GolS homologues in buckwheat seeds indeed 
confer fagopyritol synthase activities, and that the speci-
ficity for fagopyritol A1 synthesis may be mediated by a 
unique class of GolS homologues such as FeGolS-2 in 
buckwheat. Differences in amino acid sequence including 
the longer amino acid sequence (13–23 amino acids) near 
the carboxyl end may be related to the property of FeGolS-
2 to form the unique �-(1�3)-linkage of the A series fago-
pyritols. Furthermore, these findings promise the future 
application of FeGolS-2 gene for drug development for the 
treatment of insulin response disorders through biotechnol-
ogy. A better understanding of the complete biosynthetic 
pathways leading to the fagopyritol production in buck-
wheat seeds would provide an insight into new strategies 
for the fagopyritol-based drug production. Future work 
should also address the formation of unique products rel-
ated to insulin mediators and insulin mimetics useful in the 
study and treatment of non-insulin dependent diabetes 
mellitus (NIDDM) and polycystic ovary syndrome (PCOS). 

 
MEDICINAL 
 
Role in human health 
 
D-chiro-Inositol is an insulin-sensitizing agent (Cheang et al. 
2008; Galazis et al. 2011) and a component of D-chiro-ino-
sitol glycans active in insulin signaling and insulin 
resistance (Larner et al. 2010). Oral treatment with D-chiro-
inositol reduces symptoms in at least some subjects with 
NIDDM (Larner et al. 2010) or PCOS (Nestler et al. 1999; 
Iuorno et al. 2002; Gerli et al. 2003; Cheang et al. 2008; 
Galazis et al. 2011). 

Of the six fagopyritols found in common buckwheat, 
fagopyritol A1 is gaining considerable interest for medical 
applications. Fagopyritol A1 is isosteric with 2-amino-2-
deoxy-�-D-galactopyranosyl-(1�3)-1D-chiro-inositol (Ber-
lin et al. 1990) which is related to a putative insulin medi-
ator (Larner et al. 1988; Berlin et al. 1990). Because of 
their striking structural similarities, fagopyritols are of con-
siderable value for the development of a novel plant-based 
drug aimed for the treatment of insulin response disorders 
such as NIDDM (Asplin et al. 1993; Ostlund et al. 1993; 
Fonteles et al. 1996; Cheang et al. 2008; Larner et al. 2010) 
and PCOS (Nestler et al. 1999; Iuorno et al. 2002; Baillar-
geon et al. 2008; Galazis et al. 2011). 

When considering the strategies for the delivery of 
fagopyritols as insulin mediator supplements to the NIDDM 
or PCOS patients, several can be proposed. One way is to 
incorporate buckwheat bran, a commercial milling fraction 
(Steadman et al. 2000, 2001a) into a dietary schedule. 
Fagopyritols are concentrated in the axis and cotyledon 
tissues of embryos of buckwheat seeds (Horbowicz et al. 
1998), and buckwheat bran is a rich source of fagopyritols 
(Steadman et al. 2000). It is not surprising to note that 
buckwheat has been used for the treatment of diabetes (Lu 
et al. 1992; Wang et al. 1992). Urinary D-chiro-inositol ex-
cretion is elevated in diabetic db/db mice and streptozotocin 
diabetic rats (Kawa et al. 2003a). A buckwheat extract con-
centrate containing fagopyritols (5.7%) and D-chiro-inositol 
(0.2%) reduces serum glucose in streptozotocin diabetic rats 
(Kawa et al. 2003b). Assuming the composition of the 
buckwheat extract to be comparable to that in Fig. 5 (pre-
dominantly fagopyritol A1, fagopyritol B1, fagopyritol A2 
and fagopyritol B2), it is likely that dietary fagopyritols are 
utilized by rodents. Dietary research indicates that rodents 
do not synthesize D-chiro-inositol, but they are solely 
dependent on dietary sources for their D-chiro-inositol and 

D-pinitol (Lin et al. 2009b). Both D-pinitol and D-chiro-
inositol are readily absorbed by rodents from dietary sour-
ces. Absorption of labelled D-chiro-inositol administered 
orally was 98% (Lin et al. 2009b). Absorption of orally 
consumed fagopyritols is not known directly, but studies of 
rodent diets may provide indirect evidence. The sources of 
D-pinitol and D-chiro-inositol in rodent diets are mostly in 
alfalfa (leaves and young stems) and soybean meal (Lin et 
al. 2009b). D-Pinitol (1D-3-O-methyl-chiro-inositol) is 20-
50% of the total soluble carbohydrates in alfalfa leaves 
(Horbowicz et al. 1995); galactopinitols are found only in 
seeds and are not present in alfalfa herbage (Beveridge et al. 
1977; Horbowicz et al. 1995). By contrast, soybean meal 
contains very small amounts of free D-chiro-inositol and 
small amounts of free D-pinitol; most of the total D-chiro-
inositol is present as its galactoside, fagopyritol B1, and 
about one-third of the total D-pinitol is present as its galac-
tosides, galactopinitol A and galactopinitol B (Obendorf et 
al. 1998). The ratio of D-chiro-inositol to pinitol (1:3) in 
blood serum of rodents is higher than expected from the 
very low ratio in the diet, suggesting the metabolism of 
fagopyritols and/or the demethylation of pinitol followed by 
selective uptake of D-chiro-inositol by a stereospecific myo-
inositol/D-chiro-inositol transporter (Ostlund et al. 1996; 
Lin et al. 2009a) in the presence of relatively large amounts 
of competing myo-inositol. 

 
CONCLUSIONS 
 
Mature, dry and edible seeds of common buckwheat contain 
sucrose and fagopyritols, galactosides of D-chiro-inositol, as 
the predominant soluble carbohydrates. Accumulation of 
fagopyritols is associated with the onset of desiccation tol-
erance in maturing seeds. Of the six fagopyritols identified 
in buckwheat seed extracts, fagopyritol A1 and its higher 
oligomers, fagopyritol A2 and fagopyritol A3, all have a 
unique �-(1�3)-linkage between galactose and the D-chiro-
inositol ring. Fagopyritol A1 is isosteric with a putative 
insulin mediator that is insufficient in subjects with non-
insulin dependent diabetes mellitus (NIDDM) and poly-
cystic ovary syndrome (PCOS). NIDDM affects over 50% 
of people in certain populations, and PCOS affects about 
10% of women of reproductive age. Oral administration of 
D-chiro-inositol reduces the symptoms in at least some of 
the subjects with NIDDM and PCOS. Feeding a concen-
trated buckwheat extract containing fagopyritols and D-
chiro-inositol to diabetic rats reduced blood glucose. Fago-
pyritols have the potential to be a dietary treatment for 
reducing the symptoms of NIDDM and PCOS. 
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