Herbaceous Peony (\textit{Paeonia}): Genetics, Physiology and Cut Flower Production

Rina Kamenetsky1* \& John Dole2

1 ARO, The Volcani Center, Department of Ornamental Horticulture, P.O. Box 6, Bet Dagan 50250, Israel
2 North Carolina State University, 120 Kilgore Hall, Box 7609, Raleigh, NC 27695-7609, USA

Corresponding author: rinka@volcani.agri.gov.il

ABSTRACT

Peony (\textit{Paeonia} spp.) is one of the most popular garden plants in temperate regions. They were introduced into cultivation in China hundreds of years ago, and have since been spread widely to many countries. According to morphological traits and life form, the genus is divided into tree and herbaceous peonies. Numerous cultivars of herbaceous peonies have been developed to satisfy demand for colors, fragrance, flowering time, and disease resistance. In the last two decades, the popularity of peonies as cut flowers has resurfaced, and has resulted in additional requirement for new research, production methods and postharvest technology. Today, more than 25 countries produce cut peony flowers, with the primary markets being in Europe and the USA. Despite the popularity of herbaceous peonies, their production and use are restricted due to a lack of reliable systems for mass propagation, a long juvenile period, complicated flowering physiology and ineffective postharvest handling procedures. In this review, highlights of the recent scientific research in herbaceous peony are presented, along with up-to-date information on peony propagation, postharvest handling and cut flower marketing.

Keywords: chilling requirements, geophyte, florogenesis, \textit{Paeonia}, postharvest

Abbreviations: \textit{ABA}, abscisic acid; \textit{BA}, 6-benzyladenine; \textit{GA}, gibberellic acid; \textit{IAA}, indole-3-acetic acid; \textit{IBA}, indole-3-butyric acid; \textit{KT}, kinetin; \textit{NAA}, naphthaleneacetic acid; \textit{TDZ}, thidiazuron; \textit{STS}, silver thiosulfate

CONTENTS

INTRODUCTION ... 62
TAXONOMY AND GEOGRAPHICAL DISTRIBUTION .. 63
PEONY VARIETIES AND HYBRIDS ... 64
MORPHOLOGICAL STRUCTURE ... 64
PLANT DEVELOPMENT AND ANNUAL CYCLE .. 65
\hspace{0.5cm}Seed germination and juvenile period... 65
\hspace{0.5cm}Annual developmental program.. 65
\hspace{0.5cm}Physiological and biochemical aspects of annual plant development.......................... 67
PROPAGATION ... 68
\hspace{0.5cm}Seed propagation... 68
\hspace{0.5cm}Vegetative propagation.. 69
DISEASE CONTROL .. 70
HARVEST, POSTHARVEST AND TRANSPORTATION .. 70
\hspace{0.5cm}Propagation material.. 70
\hspace{0.5cm}Cut flowers ... 71
PEONY GROWING AND PRODUCTION IN DIFFERENT REGIONS .. 72
\hspace{0.5cm}China ... 73
\hspace{0.5cm}Japan .. 73
\hspace{0.5cm}Europe .. 73
\hspace{0.5cm}North America .. 73
\hspace{0.5cm}Russia .. 74
\hspace{0.5cm}Israel .. 74
\hspace{0.5cm}Southern Hemisphere ... 74
COMMERCIAL PRODUCTION OF CUT FLOWERS .. 75
CONCLUDING REMARKS ... 75
ACKNOWLEDGEMENTS .. 76
REFERENCES .. 76

INTRODUCTION

The peony (\textit{Paeonia} spp.) has a long-standing reputation as the "queen of the garden" in many countries and continents. In China, peonies were in cultivation 3,000 years ago. The Chinese chose it as the principal flower in the Imperial Palace Gardens, calling it “Sho Yo,” meaning “Most Beautiful” (Gast 1995). Missionary Buddhist monks brought knowledge of the peony to Japan, where, to this day, it is a symbol of prosperity and wealth. In Greek mythology, the
Table 1 Common names, geographical distribution and natural habitats of selected herbaceous peonies. Data adapted from Andrieu and Debussche 2007; efloras.org. 2011; Halda and Waddick 2004

<table>
<thead>
<tr>
<th>Species</th>
<th>Common name</th>
<th>Geographical distribution</th>
<th>Habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. anomala</td>
<td></td>
<td>European part of Russia, Siberia, Central Asia</td>
<td>Forests, meadows, slopes in the mountains</td>
</tr>
<tr>
<td>P. californica</td>
<td>Torrey & A. Gray</td>
<td>Endemic to southwest California</td>
<td>Dry hillsides and chaparral communities of the coastal mountains</td>
</tr>
<tr>
<td>P. canescens</td>
<td>(Schisch.) Schisch.</td>
<td>Caucasus, western and central regions</td>
<td>Mountain forests, meadows, up to subalpine zones</td>
</tr>
<tr>
<td>P. daurica</td>
<td>Andr.</td>
<td>Crimea, northwestern Caucasus</td>
<td>Mountain forests, grassy slopes</td>
</tr>
<tr>
<td>P. japonica</td>
<td>(Makino.) Miyabe & Takekoda</td>
<td>Northern Japan</td>
<td>Mountains, forests of deciduous trees</td>
</tr>
<tr>
<td>P. lactiflora</td>
<td>Pall.</td>
<td>Siberia (Dahuria), Far East, Mongolia, China, Korea</td>
<td>Open forest edges, rocky slopes of subalpine zone</td>
</tr>
<tr>
<td>P. macrophylla</td>
<td>(Albov) Lomak.</td>
<td>Caucasus, central and western regions</td>
<td>Mountain forests, clearings, meadows</td>
</tr>
<tr>
<td>P. mlokosewitschii</td>
<td>(Albov) Lomak.</td>
<td>Italy, Morocco, Spain, Greece, Turkey</td>
<td>Bushy places in meadows and hills</td>
</tr>
<tr>
<td>P. officinalis</td>
<td>L.</td>
<td>Europe to Central Asia</td>
<td>Open and semi-open slopes, forest and shrub land</td>
</tr>
<tr>
<td>P. rugolatula</td>
<td>(Rupr.) Mill.</td>
<td>Caucasus, Dagestan</td>
<td>Mountain forests, rocky slopes in middle and upper mountain zones</td>
</tr>
<tr>
<td>P. tenuifolia</td>
<td>L.</td>
<td>Southern and central regions of Europe, Caucasus, the Balkan Peninsula</td>
<td>In steppes, among shrubs on slopes</td>
</tr>
<tr>
<td>P. wilbourniana</td>
<td>Hartwiss ex Lindl.</td>
<td>Caucasus (Abkhazia)</td>
<td>Mountain forests, clearings</td>
</tr>
</tbody>
</table>

The genus *Paeonia* belongs to the family Paeoniaceae and consists of more than 30 woody and herbaceous species, native to Asia, southern Europe and western North America (Halda et al. 2004). Tree peonies are popular as garden plants in China, Japan, the USA, Canada, and Europe. These plants have woody stems, grow to approximately 2 m, and flower in early spring. Herbaceous peonies are shorter, with annual stems arising from underground storage organs, and flower in late spring and early summer.

The taxonomy of the genus *Paeonia* has been a subject of numerous discussions and revisions, although this has recently been greatly clarified by Ji et al. (2012). For many years, the genus was considered to be a part of the family Ranunculaceae, but now it is generally accepted that the genus *Paeonia* belongs to the family Paeoniaceae. Within the genus, classification of the species has also changed several times with increasing access to plant material and publications of Russian and Chinese botanists by Western taxonomists and vice versa. Today, however, plant material is more readily available for study from regions where large populations of wild peonies exist.

The most widely used classification system for the genus *Paeonia* in western countries is the system developed by the English peony expert, Sir Frederick J. Stern (1946). He divided the genus into 3 sections, 4 subsections, 16 groups, 33 species and 13 botanical varieties. Halda et al. (2004) documented 25 species, including 40 subspecies and varieties. Some sources, mostly from the Internet, describe between 35 and 50 different species of the genus *Paeonia*. Geographical distribution and natural habitats of the most well known herbaceous species are presented in Table 1.

A number of species (*P. officinalis*, *P. mascula*) are tetraploid and exhibit considerable variation (Page 1997). Classification of species and popular cultivars was also proposed based on the morphological characters, patterns of flavone/flavonol compounds in the petals (Hosoki et al. 1991) or DNA analysis (Hosoki et al. 1997). Random amplified polymorphic DNA (RAPD) analysis was performed to classify 21 herbaceous peony cultivars or species (Hosoki...
et al. 1997). Forty primers were screened; 11 of these produced 99 reproducible amplification DNA fragments, useful as polymorphic markers. With these markers, 21 genotypes were distinguished and the similarity values among the genotypes calculated. A dendrogram by cluster analysis revealed that cultivars of genotypes were clearly separated from P. officinalis, P. peregrina, and P. temuifolia. Except for a few cultivars, those of P. lactiflora can be broadly divided into Japanese, Chinese and Western groups. Similarly, Guo et al. (2011) successfully used sequence related amplified polymorphism (SRAP) to characterize and differentiate 13 cultivars of P. lactiflora. Recently, microsatellite (simple sequence repeat, SSR) primers were developed for the P. lactiflora, to investigate the diversity within Chinese peony germplasm resources (Li et al. 2011). The set of 10 SSRs enlarged the bank of molecular markers available for the herbaceous species of Paena useful for evaluating genetic diversity, analyzing parentage, identifying hybrids, conserving germplasm, and breeding for desired traits.

PEONY VARIETIES AND HYBRIDS

Herbaceous peony varieties are primarily derived from P. lactiflora, "Chinese Peony", native to northeast Asia (Bailey 1916; Everett 1981; Rogers 1995). The majority of these varieties were raised by French breeders in the 19th century, and were well suited to the European climate. After the First World War, the breeding of interspecific hybrids began in the USA, with the intention of lengthening the flowering period and increasing the color range. The number of peony cultivars is estimated to be around 5,000, but many of them are no longer cultivated. For example, most of the cultivars of P. officinalis, popular in Europe in the 18th century, were replaced by modern varieties derived from P. lactiflora (Page 1997).

The intersectional hybrid peonies (so-called Itoh hybrids) are of particular interest. They were bred by Japanese breeder Toichi Itoh using pollen of tree peony P. suffruticos ("Alice Harding") on the white, semi-double herbaceous peony 'Kakoden'. This cross produced 36 seeds and the first flowers were obtained in 1963 (Smith 2004). The resultant plants had herbaceous stems with tree-peony-like leaves, and pure bright yellow flowers. The color yellow is not found in herbaceous species, but is frequently seen in tree peonies. The American nurserymen Louis Smirnow published the first description of this work in the Bulletin of the American Peony Society in 1967; the same year that four yellow and two pink herbaceous hybrids were registered and thus, the dream of many peony amateurs and producers was accomplished (Smith 2004). The original hybrids have been lost, but were re-created later by several breeders. New genetic combinations yielded an assortment of new shapes and colors. Currently, propagation of these varieties is still challenging, but several biotechnological companies have reported on successful propagation of new intersectional hybrids.

Valuable information on local varieties and growth and local production techniques exists in Russian, Spanish, Chinese and Japanese literature, but, unfortunately, this information is less available. Certainly, an international effort is needed to evaluate and summarize these data, as performed by Ji et al. (2012), Saez Molina (2012) and Shen et al. (2012).

MORPHOLOGICAL STRUCTURE

Peonies grow from an underground crown (tuberous compressed underground stem) and have two types of roots: bulky storage roots and thin fibrous roots (Kapinos and Dubrov 1993). In some species (i.e. P. officinalis) roots are able to produce adventitious buds, while in other species (i.e. P. temuifolia) large clumps are formed using underground stolons. Bushy plants are green (Fig. 1A), with pink, green or red annual stems that grow to 50-100 cm tall, and leaf shape varies from broad to grass-like. After the flowering season, underground buds (also called “eyes”) develop on the crown at the base of the annual herbaceous stems (Fig. 1C). These new buds are protected by several sheaths and produce new stems the following spring. Bud emergence begins in spring (Fig. 1D). Stems elongate rapidly and reach final heights in 60 to 70 days. Under natural conditions, in the Northern Hemisphere, flowering...
begins in April and continues until the end of June, depending on the location and cultivar. After flowering, the leafy stem remains green until September to October, when the leaves senesce and the peony plants enter dormancy for 3-4 months (Barzilay et al. 2002).

Most species have a single terminal flower, although P. emodi, P. veitchii and P. lactiflora produce one to three lateral flower buds per stem. Wild peonies typically have five green and persistent sepals and five to ten petals, and close at night or when the sky is very overcast (Page 1997). The number of pistils varies from one to eight, depending on the species, with stamens numbering up to 140. The seed pods are fleshy, and become leathery or woody as they mature.

The breeding and selection process has resulted in a substantial increase of flower forms and colors. Peony types are characterized according to the petal morphology: single, Japanese, anemone, semi-double, bomb and double (Fig. 2). All types are grown as cut flowers, though the double types are the most popular, due to the longer postharvest life.

PLANT DEVELOPMENT AND ANNUAL CYCLE

Seed germination and juvenile period

Peony seeds are brown to black, smooth, and relatively large. During seed development, two types of embryos form successively: the sexual embryo is created by the sexual process (syngamy) and the somatic embryo by the formation of an initial embryoid cell from a somatic cell of the protoderm in the sexual embryo (Batygina and Vasilyeva 2003). Most herbaceous peony species have hypogeous seed germination, when the cotyledons of the germinating seed remain non-photosynthetic below ground. Epigeal germination, when cotyledon expands and becomes photosynthetic above the ground, has only been described for P. temuifolia (Saunders and Stebbins 1938). Under natural conditions, seeds of many species germinate only in the second year due to an underdeveloped embryo, but sometimes sprouting of peony seedlings may take up to five to seven years (Halda et al. 2004).

Peony seeds display complex dormancy patterns, in which various parts of the embryonic axis differ in the depth of dormancy. In this case, radicle emergence occurs readily, but the epicotyl requires specific growing conditions (Bewley and Black 1994). Similar to many other species from temperate regions (e.g., Trillium, Allium tricoccum, and Hepatica), peony seeds have deep, simple epicotyl morphophysiological dormancy. The epicotyl appears to be sensitive to cold stratification, only after the radicle has elongated (Baskin and Baskin 2001). For root emergence, a relatively high temperature of ~20°C in the dark is required. Following primary root emergence, dormancy release of the cotyledon leaf requires one to four months of low temperatures. Leaf sprouting and elongation occur when temperatures increase to 15 to 20°C after the cold period (Baskin and Baskin 2001).

Under experimental conditions, epicotyl dormancy was broken in P. lactiflora embryos after topical application of agaroce gels containing gibberellic acid (GA3) and 6-benzylaminopurine (BA). Cultivation of isolated embryos significantly increased dormancy release and leaf formation (Buchheim et al. 1994). Similar results were recently shown for the seeds of Chinese cultivars. BA and GA3 had a positive effect on promoting germination and embryo growth, while addition of 0.5 mg/L α-naphthaleneacetic acid (NAA) to the culture medium significantly enhanced rooting (Gao 2010). Axillary buds can be induced in peony seedlings by adding GA3 (1.84 mg/L), sucrose (11.02 g/L) and glucose (17.13 g/L) to the in vitro culture medium (Yu et al. 2008).

The juvenile period of herbaceous peonies lasts for 3 to 5 years, and in some species first flowering was observed only after 6 to 7 years of vegetative growth (Uspenskaya 2002). However, the possibility of shortening the juvenile stage by environmental manipulations was recently reported (Jacob et al. 2006). In the first growing cycles, duration of the controlled cold treatment was only about 2 weeks, as compared with 6 to 8 weeks required for dormancy release of the adult plants. This approach allowed several developmental cycles during one calendar year. Consequently, first flowering of peony seedlings was obtain less than 27 months after seed sowing (Jacob et al. 2006).

Annual developmental program

Annual development of herbaceous peonies is similar to that of geophytes that originate from regions with cold win-

Fig. 2 Flower types in herbaceous peony. • Single peonies have five or more broad petals in one or two rows surrounding a center of golden, pollen-bearing stamens. • Japanese peonies have five or more petals and a center of narrow petaloids or feathery structures called staminodes. The partially matured stamens may carry a trace of pollen, but are usually not pollen bearing. • Anemone peonies are distinguished by the absence of anthers, while the filaments of the stamens are transformed into narrow and incurved petal-like structures. • Semi-double peonies have five or more outer petals and a center of broad petals intermixed with pollen-bearing stamens. The pollen bearing anthers can be seen while the flower is in bloom. • Bomb peonies have a row of outer guard petals surrounding a pompom tuft of dense petals. • Double peonies have five or more outer petals, the central stamens and carpels are transformed into petals that make up the main body of the large, full flower.

Herbaceous peony: A review. Kamenetsky and Dole

...ters and dry, hot summers (Flaishman and Kamenetsky 2006; Walton et al. 2007), as well as deciduous fruit trees (Erez et al. 1988; Kamenetsky et al. 2003). Plants flower in the spring, initiate subsequent flowers during the summer, and shed their leaves and enter dormancy in late autumn.

Once the peony plant reaches the flowering stage, the annual cycle of the adult plant is regulated by environmental conditions (Evans et al. 1990). The annual life cycle of field-grown peony 'Sarah Bernhardt' was studied in detail under local conditions in Israel (Barzilay et al. 2002). Renewal buds of various sizes develop on the underground crown at the base of the annual herbaceous stems after spring flowering. The large buds will produce new stems the following spring, while the smaller buds will remain dormant until the next season, or will produce only small sprouts. Under Israeli conditions, the new monocarpic shoots are initiated in the renewal buds, with the formation of the first leaf primordia at the end of June, and continue to increase in size until February (Fig. 5). During the summer, the renewal buds contain only vegetative meristems. The apical meristem ceases leaf formation during senescence of the aboveground shoots in the fall. During September, the apical meristem of the renewal buds reaches the generative stage and achieves the form of a dome, but remains undifferentiated (Fig. 4). In October, the floral parts become visible. Floral differentiation is completed by the beginning of December (Fig. 4C). Differentiation of the peony bud includes formation of bracts, calyx, petals, stamens and pistil (Huang et al. 2009).

The factors inducing leaf abscission, bud dormancy and flower formation of peonies are unknown. According to Wilkins and Halevy (1985), flower initiation in peonies is autonomous i.e. proceeding without the need for an external temperature or photoperiod signal. This hypothesis still needs an experimental confirmation.

Reproduction and resource allocation to male and female functions in P. officinalis was studied during two reproductive seasons in relation to plant size (Andrieu et al. 2007). It was shown that large plants allocated more resources to reproduction by the production of additional flowering stems. However, in terms of relative allocation, large and small plants allocated a similar proportion of resources to reproduction. P. officinalis is a hermaphroditic plant, but gender modification is size-dependent, and larger plants produce more female flowers than small plants.

Fig. 4 Scanning electron microphotographs of intrabud development of Paeonia 'Sarah Bernhardt' in Israel. (A) Initiation of leaf primordia (L) in the apical meristem in June. Flat apical meristem is visible in the central part of the bud. Bar = 0.5 mm. (B) Floral differentiation in November. Leaf primordia (L) surround the developing flower (F). Petal differentiation begins on the periphery of the generative meristem and progresses centripetally. In addition to the central flowering shoot, each renewal bud contains 3-6 axillary lateral shoots (LS). Cover leaves removed. Bar = 1 mm. (C) After formation of sepals (S), numerous petals (P) and petaloids, differentiation ceases at the beginning of December. An undifferentiated space 0.5-0.7 mm in diameter remains between central petals (P) of the developing flower. Bar = 5 mm. From Barzilay A, Zemah H, Kamenetsky R, Ran I (2002) Annual life cycle and floral development of 'Sarah Bernhardt' peony in Israel. HortScience 37, 300-303, ©2002, with kind permission from ASHS, Alexandria.

Fig. 5 Changes in the concentration of individual sugars. Fructose (square), glucose (full triangle), sucrose (circle) and total sugar (empty triangle) concentration during floral shoot development in peony stems, leaves and bud flowers. Bars = ±SE. Adapted from Walton EF, McLaren GF, Boldingh L (2007) Seasonal patterns of starch and sugar accumulation in herbaceous peony (Paeonia lactiflora Pall.). Journal of Horticultural Science and Biotechnology 82, 365-370, ©2007, with kind permission from the Editor.
The accumulated chilling units were calculated according to Fishman et al. (1987) and Erez et al. (1988). Flowering occurred two months after dormancy release.

When container grown plants of ‘Sarah Bernhardt’ were cooled artificially, dormancy release was found to be best under chilling regimes of 2°C for 60 days or 6°C for 70 days (Kamenetsky et al. 2003). Warmer temperatures were less effective. Comparison of the sprouting of plants exposed to 2, 6 or 10°C for 60 days clearly indicates that the chilling effect on dormancy breaking intensified as the chilling temperature was lowered. The effect was more pronounced on the number of sprouting stems than on the stem length. It should be noted, however, that low temperatures (~0°C) enhanced dormancy release of many renewal buds, but caused flower abortion, probably due to the resource allocation and intense vegetative growth at the expense of the reproductive organs (Kamenetsky et al. 2000).

In New Zealand, potted plants of early flowering ‘Coral Sunset’, mid-season flowering ‘Monsieur Jules Elie’, and late flowering ‘Sarah Bernhardt’ were stored at 1, 4, or 7°C for different durations (3, 6, 9, or 12 weeks) to determine their chilling requirements for flower production (Fulton et al. 2001). Control plants were forced without chilling and produced no shoots or flowers. Chilling was followed by forcing at 18°C in a controlled greenhouse until flowering had finished. For all cultivars, the mean number of shoots and flowers increased as plants were subjected to colder chilling temperatures, or longer chilling durations. However, after 9 weeks of chilling no significant within-cultivar differences were registered between different temperature regimes. The time to sprouting after the completion of chilling treatments consistently decreased as the duration of the chilling treatment increased. Although one could expect that the earliest flowering types would require the least amount of chilling, the authors suggest that the early flowering ‘Coral Sunset’ required the greatest amount of chilling to sprout consistently, while ‘Sarah Bernhardt’, a very late flowering type, required the least. The mid-season cultivar ‘Monsieur Jules Elie’ needed significantly more chilling than the other two cultivars to achieve maximum flowering potential (Fulton et al. 2001). Therefore, spraying and flowering potential of peonies depends on temperature regime and duration of chilling period, while earliness or lateness appears to be a genetic trait that is not regulated by temperature.

Application of GA3 to dormant underground buds can partially substitute the cold requirement for breaking dormancy and promote bud growth (Evans et al. 1990; Halevy et al. 2002). GA3 treatment does not promote flower initiation and differentiation in peonies, and is not effective if applied before flower formation (Halevy et al. 1995). Observations on 20 Chinese varieties under ambient and forcing conditions concluded that only five of them were suitable for forcing (Cheng et al. 2009b). In ‘Da Fu Gui’, chilling promoted dormancy release and plant growth. Stem height, flower size and flowering rate were positively affected by both chilling and spraying with 200 or 500 mg/L GA3, while leaf extension (maximum width of foliage) was influenced only by GA3 (Cheng et al. 2009b).

Halevy et al. (2002) suggested that photoperiod does not affect flower formation and stem elongation in herbaaceous peonies. Recently, this assumption was supported by Niu et al. (2010). Illumination of two P. lactiflora cultivars for 8, 10, 12 and 14 h per day did not affect growth rhythms and flowering period, but significantly increased the number of flowers per plant. Shorter photoperiods were beneficial for one variety (Taohuafeixue), while 14-h day length enhanced flower quality in the second variety (Zifengyu). The effect of photoperiod, light intensity and light quality should be addressed in future research to optimize pre- and post-harvest quality of cut flowers.
3. Effects of growth temperatures on plant development

Following the fulfillment of chilling requirements, growth temperatures significantly affect the dynamics of bud emergence, stem elongation and anthesis in herbaceous peony. In recent experiments, the container-grown pre-chilled plants of ‘Sarah Bernhardt’ were exposed to three temperature regimes: 16/5, 22/10 or 28/10°C (day/night, respectively) (Kamenetsky et al. 2003). At low temperatures, bud emergence was slow and the elongation of the first stems was observed only at 50 days. The stems reached a length of 55 cm after 85 days of growth at 16/5°C. Flower quality in this treatment was, however, better than that of plants grown at higher temperatures: the stems were stronger and the flower color was more intense. Production temperatures of 22/10°C resulted in rapid sprouting of the stems and an average stem length of 85 cm. Bud emergence was fastest at 28/10°C, the maximum number of shoots was observed after only 36 days of growth.

Growing temperatures significantly affected the flowering date. Anthesis occurred after 50 to 60 days at high temperatures, even when the plants were initially exposed to 22/10°C for 30 days and were subsequently transferred to high temperatures. Continuous growing at 22/10°C led to flowering after 83 days. Maximal realization of flowering potential was achieved at growing temperatures of 22/10°C (Kamenetsky et al. 2003).

In New Zealand, pre-chilled potted plants of ‘Coral Sunset’, ‘Monsieur Jules Elie’, ‘Sarah Bernhardt’, and ‘Karl Rosenfeld’ were forced in a range of controlled temperature regimes (Hall et al. 2007). For all cultivars, warm temperatures of up to 25°C led to more rapid shoot emergence and flower development. The rate of development from shoot emergence to flower opening increased linearly with warmer temperatures. Cultivars varied in the number of heat units required for shoot emergence. ‘Coral Sunset’ shoots were the first to emerge and last to emerge was ‘Monsieur Jules Elie’, which took 50% longer to emerge than ‘Coral Sunset’. No significant differences were found among cultivars in the time taken from shoot emergence to flower opening, although the stage of bud opening was slightly earlier in ‘Karl Rosenfeld’ (Hall et al. 2007).

4. High growth temperatures cause flower abortion

Recent attempts of peony production in warm regions posed new questions on the effect of high growth temperatures on flower development and cut flower quality. It was shown that under sustained high day and night temperatures of 28/22°C, almost all stems aborted their flower buds, mostly during the early stages of flower development. The transfer of the plants from 22/10°C to 28/22°C after 30 days of growing also caused abortion of most flower buds (Fig. 7). In contrast, when plants were grown for the first month at 28/10°C and then transferred to 22/10°C, flowering was not significantly different from that of plants grown continuously at 22/10°C (Kamenetsky et al. 2003). However, exposure to higher night temperatures of 22°C during the first 20 days of growing caused a very high abortion rate of young flower buds. In these controlled condition experiments, the temperature regime of 22/10°C (day/night) was found to be optimal for the production of quality flower stems and proper flower development.

Of course, under natural growing conditions, large temperature variations are common. In order to expand cut peony production, biological limitations of the peony will need to be considered. Production techniques should be developed for heating during long and cold springs and for cooling and ventilation when air temperatures are too high to avoid flower abortion and produce strong stems. The same techniques will help prevent foliar diseases, which are caused by high air humidity and excessively high or low production temperatures.

PROPAGATION

Seed propagation

Seed propagation of peonies is not common in commercial production, due to the complicated process of seed germination, the long juvenile period and seedling trait variability that occurs with sexual reproduction. However, commercial and amateur breeders propagate peony by seeds. Slow propagation by seeds makes peony breeding very time consuming, and this fact has contributed to the low commercial interest in peony breeding by large international companies.

Jacob et al. (2006) recommended the following protocol for seed germination:

- Place seeds in a moist soil-less substrate in sealed plastic bags
- Store bags at a warm temperature (~20°C) in the dark for one month.
- Sow seeds with an emerged root in pots containing a mixture of peat and perlite and place in a greenhouse for one month.
- Place the pots in a dark, cold room (4°C) for 15 to 30 days to stimulate aerial growth.
- After the first leaf develops, place the pots under greenhouse conditions (15-25°C, depending on the season, which corresponds to the normal temperature of plant development.

Many seed germination protocols for different herbaceous peony species and hybrids can be found via Internet sources (www.peony.ca; www.paeonia.com). Most of them recommend warm-cold cycle for dormancy release, followed by a transfer to pots and growing under light conditions. Many sources recommend a prolonged period (up to four months) of cold for shoot emergence.

In regions with a temperate climate and cold winters, seeds can be sown directly in the ground. In this case, the above-ground shoots might appear only in the second spring, since a mature seed with a hard seed coat is not able to overcome the first dormancy in the fall and to develop a primary root. Therefore, the seed remains in the soil until the following spring, when the warm moist conditions allow release from the first dormancy. Then the seed overwinters again to overcome the second dormancy before producing a shoot in the following spring (La Pivoinerie D’Aoust Peony
As previously mentioned, the juvenile period might last for 4 to 6 years, and the first flowers are not always indicative of a plant’s potential. It may well be 7 years before a mature, stable flower is obtained.

Vegetative propagation
Vegetative propagation is the most reliable propagation method in commercial production, as well as in private gardening.

1. Crown division
Crown division is the most popular technique used to propagate herbaceous and Itoh peonies. For successful propagation, the crown should be divided from the lower part of the stem, located closer to the crown. The lower leaf should be removed, while two thirds of the upper leaf should be cut and removed in order to decrease transpiration. Each crown division should be manipulated to develop roots while still attached to the mother plant. This method has been described for tree peonies (Rogers 1995), but in Russian literature it is called “Chinese techniques” and was also proposed for herbaceous peony species (Uspenskaya 2002). In early spring, as buds begin to sprout, they should be gently exposed and covered with a well-drained mixture of sand and compost, with an addition of 300 to 400 g of bone meal and 150 g superphosphate per plant. Thereafter, the plant is covered by a 50 × 50 cm frame that is 40 cm high. When the shoots first sprout, the frame should be filled with a sand/compost substrate of up to 10 cm. As the stems elongate, the substrate should be raised to 25 to 30 cm. Regular watering is necessary for successful rooting. At the end of the next season (late summer), the frames can be removed, and the rooted shoots can be separated from the mother plants and re-planted to a nursery. This procedure can be repeated using the same plant only once in 3 to 4 years.

2. Renewal buds with small crown segment
This technique is similar to crown division. After harvest in late summer, the crown is divided into many small fragments, each containing a renewal bud with a small crown part (Ippolitova 2009). These propagation units are planted 3 to 4 cm deep in beds with a light, well-drained substrate, where constant humidity can be maintained. During dry and warm periods, propagation beds should be shaded. During cold winters, plants need to be protected from frost. Callus tissue is formed after 3 weeks and rooting is visible after 1.5 to 2 months (Ippolitova 2009). Even after successful rooting, the critical stage of cutting development is the further formation of the renewal bud in the lower node. If this bud does not form, the plant will die, even if it has developed a root system. In cold regions, rooted cuttings should be stored in peat moss filled bags for several days as long as they are not subject to large temperature variations (La Pivoinerie D’Aoust Peony Nursery, www.paeonia.com). In Dutch commercial production, peony growers divide the crowns after harvest in October to November and store them outside until the shipment of plant material in January to March.

3. Green shoot cuttings
This method was described in Russian literature (Kapinos and Dubrov 1993; Uspenskaya 2002) and has a relatively low success rate (15-20%). However, this method can be used when the breeder or producer does not want to damage the crown of the mother plant, or when propagating very rare varieties. Unfortunately, this method is not suitable for many hybrid species.

Shoot cuttings are harvested two weeks before flowering. Only one-third of the shoots can be removed from an adult plant. Each shoot produces two to three cuttings, containing two leaves and one internode. The lower leaf should be removed, while two thirds of the upper leaf should be cut and removed in order to decrease transpiration. The best rooting was obtained from cuttings taken from the lower part of the stem, located closer to the crown. To increase rooting, cuttings can be treated with indole-3-acetic acid (IAA) or NAA (5-10 mg/L) for 12 to 24 h and then rinsed in water prior to planting. The rinsed cuttings should be planted in vermiculite or a well-drained substrate, with the lower node inserted to a depth of 3 to 4 cm and cuttings spaced 10 to 20 cm apart to avoid diseases and rotting of the plants. Optimal air and substrate temperature for rooting is 20 to 25°C, with a relative humidity of 90 to 95%. Using fog can increase the rooting percentage, but also increases disease and rotting of the cuttings. During the first two weeks, cuttings should be shaded and preventatively sprayed with fungicides. Callus tissue is formed after 3 weeks and rooting is visible after 1.5 to 2 months (Ippolitova 2009).

4. Root cuttings
This method was proposed for the hybrids of P. officinalis, P. peregrine and P. tenuifolia, which are able to form renewal buds on storage roots (Rogers 1995). Rubinina (2009) suggests that some hybrids (e.g., ‘Carol’, ‘Henry Bockstoce’, ‘Ellen Cowley’) can be propagated using this method. However, most P. lactiflora hybrids do not produce buds on adventitious roots.

For propagation, storage roots can be divided during autumn into 1 to 3 cm long sections, treated with fungicides and planted in 5 to 6 cm deep boxes filled with clean river sand. Boxes should be stored at ambient temperatures or at 3 to 8°C in cold regions to protect cuttings from frost. During winter, the sand should be slightly moist. The renewal buds begin to form in February or March, and new shoots will sprout with increasing temperature (April-May in the regions with moderate climate). New plants should be protected from high and low temperatures, and can be re-planted in a permanent plot after 3 years (Kapinos and Dubrov 1993; Uspenskaya 2002).

5. Layering
Layering is a technique in which a section of the stem is manipulated to develop roots while still attached to the mother plant. This method has been described for tree peonies (Rogers 1995), but in Russian literature it is called “Chinese techniques” and was also proposed for herbaceous peony species (Uspenskaya 2002). In early spring, as buds begin to sprout, they should be gently exposed and covered with a well-drained mixture of sand and compost, with an addition of 300 to 400 g of bone meal and 150 g superphosphate per plant. Thereafter, the plant is covered by a 50 × 50 cm frame that is 40 cm high. When the shoots first sprout, the frame should be filled with a sand/compost substrate of up to 10 cm. As the stems elongate, the substrate should be raised to 25 to 30 cm. Regular watering is necessary for successful rooting. At the end of the next season (late summer), the frames can be removed, and the rooted shoots can be separated from the mother plants and re-planted to a nursery. This procedure can be repeated using the same plant only once in 3 to 4 years.

6. Micropropagation
Tissue culture is the practice of producing a large number of progeny plants when vegetative reproduction is slow or difficult. This method is often used to propagate novel plants and/or to provide a large number of plantlets from stock plants. The development of fast, reliable tissue culture protocols would facilitate the rapid introduction of new varieties into commercial markets. Research groups in the USA, China, Japan and Poland have reported successful multiplication of peony in vitro, and several commercial companies are already using micropropagation for propagating rare varieties. A procedure for in vitro propagation of ‘Takinoyoso’ and ‘Sarah Bernhardt’ through shoot tip culture was described by Hosoki et al. (1989). Half strength Murashige-Skoog medium, supplemented with 6-BA and GA, promoted formation and growth of axillary buds. Continuous shoot multiplication was achieved by vertically adding 300 to 400 g of bone meal and 150 g superphosphate to the substrate. Boxes should be stored at ambient temperatures or at 3 to 8°C in cold regions to protect cuttings from frost. During winter, the sand should be slightly moist. The renewal buds begin to form in February or March, and new shoots will sprout with increasing temperature (April-May in the regions with moderate climate). New plants should be protected from high and low temperatures, and can be re-planted in a permanent plot after 3 years (Kapinos and Dubrov 1993; Uspenskaya 2002).
chloride for 10 min (Zhang et al. 2006). It was suggested that 300 to 700 plants could be obtained from a single bud during one year. It was further recommended that 0.5 to 2 mg/L BA + 0.5 mg/L kinetin (KT) and 1 mg/L IBA be added to the cytokinin-free medium to enhance shoot induction. A comprehensive review of micropropagation of herbaceous peony (P. lactiflora) was recently published by Shen et al. (2012). This valuable review comprehensively covers advances made in various aspects of tissue culture and micropropagation, especially published in Chinese.

DISEASE CONTROL

Diseases often reduce the quantity and quality of peony flowers and, in some cases, cause significant plant mortality. Some diseases, such as botrytis blight and red spot, are perennial, while others may be sporadic. Peony diseases can be controlled by a combination of cultural management and chemicals. It is recommended to start commercial production with clean, high-quality plant material, and to treat the propagation units and roots with a fungicide dust before direct planting in the field (Table 2, Stevens et al. 1993). Overhead watering, poor air circulation, and overcrowding may cause plant losses from red spot and other fungal and foliar blights.

The major disease that seriously threatens peonies is botrytis bud blight, caused mainly by Botrytis paeoniae and B. cinerea (Rogers 1995; Page 1997). It can be controlled by regular spraying with a systemic fungicide and the removal and destruction of dead foliage at the end of the season. Control is much more effective if the fungicides are applied before symptoms of red spot are apparent. Other fungal diseases may be controlled by curative fungicide applications beginning as soon as symptoms develop.

Viral disease of peony, which is associated with strains of Tobacco rattle virus (TRV) and known as peony ring spot disease, has been reported worldwide (Europe, United States, Japan, and New Zealand) for several years (Chang et al. 1976; Robertson et al. 2009; Samuitiene et al. 2009). In addition, Alfalfa mosaic virus (AMV) was recently identified in plants cultivated at the Botanical Garden of the University of Parma, Italy (Bellardi et al. 2003), and Cucumber mosaic virus (CMV) was found in P. lactiflora in France (Cardin et al. 2010).

<table>
<thead>
<tr>
<th>Table 2 List of the common peony diseases (adapted from: Stevens et al. 1993)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease</td>
</tr>
<tr>
<td>Blight</td>
</tr>
<tr>
<td>Rots and Wilts</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Root nematodes</td>
</tr>
<tr>
<td>Virus</td>
</tr>
<tr>
<td>Callus</td>
</tr>
</tbody>
</table>

splitting the shoot axis and the subsequent division of elongated axillary shoots every 36 days. High rooting frequency (57-100%) was obtained on paper-bridge liquid medium supplemented with Indole-3-butyric acid (IBA). Half of the rooted plantlets were established in a porous substrate. Thus, it was suggested that 300 to 700 plants could be obtained from a single bud during one year.

For dormant bud explants, the most successful sterilizing procedure was soaking in 0.1% aqueous mercuric chloride for 10 min (Zhang et al. 2006). The addition of 3.1 mg/L GA and 1 mg/L BA was recommended for bud induction; multiplication and root induction were enhanced by 1 mg/L BA + 0.5 mg/L kinetin (KT) and 1 mg/L IBA, respectively. Tian et al. (2010) investigated the shoot induction ability of explants. Callus was readily induced from stem and petiole explants within 2 days of culture, but failed to generate shoots. Adventitious shoots were successfully produced from meristematic regions only: underground buds on nodal stem sections, petioles and petiolules. Sections containing nodal junctions were the most effective explants. Thidiazuron (TDZ) was more effective than BA at inducing shoots, and a 100% shoot induction rate was obtained in medium containing 0.1–3 mg/L of TDZ. However, higher concentrations of TDZ inhibited shoot elongation and only large leaf clusters were produced. GA3 was beneficial for shoot and stem elongation (Tian et al. 2010).

The Polish group of Gabryszewska (2001, 2006) developed techniques for peony multiplication in tissue culture and showed that temperature had a significant effect on peony multiplication. Chilling peony shoots at +4°C for two months activated further growth and development of the shoots. The cooled explants, subsequently grown at 15°C, produced the highest numbers of shoots and leaves during the first subculture. Dormancy was induced along with reduced growth and multiplication rates and leaf senescence in shoots propagated under a constant high temperature (20–25°C) (Gabryszewska 2006). The physiological state of the explants (dormant vs. non-dormant shoots) of ‘Jadwiga’ influenced the reaction of the explants to the application of plant hormones or light conditions (Gabryszewska 2001). In dormant shoots, growth and multiplication rates were reduced. The application of abscisic acid (ABA) or fluridone to the cytokinin-free medium had no effect on the number of axillary shoots, but influenced the leaf formation on non-dormant and dormant shoots. The highest number of leaves and shoots were found on explants grown under red light, both on non-dormant and dormant shoots.

The rooting in vitro and acclimatization in a greenhouse were investigated using ‘Jadwiga’ and ‘Professor Wojcicki’ (Gabryszewska and Kawu-Miszczyk 2010). The presence in the medium of auxins (IBA 1 mg/L + IAA 1 mg/L + 0.01 mg/L NAA) and 30 g/L of sucrose stimulated the number of roots/shoot. At the same time, a higher rooting percentage was found using the auxin-free medium in the presence of high level of sucrose. The two cultivars varied in acclim-
crowsns are treated for 2 h at 43.5°C for prevention and for one hour at 45°C if contamination is likely (P. Wierstra, personal communication). Such treatment should occur as soon as possible after the digging of the crowsns. Crowsns for potted plant production are shipped to the finished plant producers soon after harvesting and processing, as the crowsns usually form roots in the container before winter.

After grading and processing, the crowsns can be stored at 2–4°C and further processed and packaged in early January, in the Northern Hemisphere. Other recommendations call for storing the crowsns initially at 15 to 18°C and lowering the temperature gradually until early January. Regardless of previous temperature treatments, in early January the temperature can be dropped to -2°C until the crowsns are shipped or planted. Propagation material can be stored until the end of June, although crowsns stored until then are generally slower to grow in the first year than those not stored as long.

Cut flowers

Harvest, cut stage and post-harvest treatments. For cut peony stems, the harvest stage is critical as the flowers can open quickly. Consequently, peony stems may need to be harvested up to three times a day if temperatures are warm. Post (1949) recommended harvesting early in the morning, with late evening the second best time. The opening of peony buds is separated into six stages (Gast et al. 2001):

1. Tight bud with little true petal color showing
2. Tight bud with true petal color showing
3. Soft bud
4. Very soft bud
5. Almost open with petals not reflexed but still curving inward towards the center
6. Fully open

Needless to say, these stages are quite subjective, requiring the use of well-trained harvesters. In particular, stages 2 to 4 depend on the degree of softness of the bud. The degree of softness for optimum postharvest life varies with the cultivar. In general, white flowering cultivars are the first to open, pinks are intermediate, and red the slowest. The less mature the flower bud, the longer the vase life (Eason et al. 2002). Bud development observation by Yu et al. (2011) showed great differences in optimum harvesting stage between 11 cultivars, especially between the hybrid peony group and lactiflora group. Bud diameter was not be the only indicator that could be used to select optimum harvesting stage and various other parameters were needed including sepal opening angle, sepal color, petal color shades (of firmness) (2011) determined that ‘Pink Hawaiian Coral’, ‘Red Charm’, ‘Edulis Superba’, ‘Red Magic’, and ‘Sarah Bernhardt’ should be harvested at stage 1. ‘Duchesse de Nemours’, ‘Taff’, ‘ Sorbet’ and ‘Monsieur Jules Elie’ should be harvested at stage 2. ‘Kansas’ should be at stage 3 and ‘Karl Rosenfield’ at stage 4.

Postharvest grades and standards have been established (Post 1949). Double, bomb or semi-double flowering peonies are generally more popular than single types, possibly due to the long vase life of the doubles, which have more petals to open.

Ongoing questions for peony postharvest include concerns about when to start harvesting from new plantings, the number of stems that can be harvested from each plant and the amount of foliage to leave when harvesting. Rogers (1995) recommended that all flower buds but one can be removed from the plants that have been extended vegetative growth. The one remaining flower is used to confirm reproductive growth. The one remaining flower is used to confirm reproductive growth. The one remaining flower is used to confirm reproductive growth. The one remaining flower is used to confirm reproductive growth. The one remaining flower is used to confirm reproductive growth.

Due to the relatively short flowering season at any one location, there is a strong interest in long-term storage of cut peonies. The season can be extended by long-term cold storage of the flower buds at 0 to 1°C in plastic lined boxes for up to 3 to 4 weeks (Gast 2000; Eason et al. 2002). Cut peonies maintained a vase life of 4.7 to 8.6 days, depending on the cultivar, after 4 weeks of storage (Gast 2000). Longer storage of up to 12 weeks is possible, but vase life and flower size will be reduced (Nowak and Rudnicki 1990; Gast 2001; Zang and Lui 2003; Walton et al. 2010). Flowers for long term storage are generally not hydrated, to prevent opening and development of firmness (Walton et al. 2011). However, some growers hydrate at 0 to 2°C for 1 to 2 h after harvest, then sort, grade and bunch, and allow the foliage to air dry before being packed in boxes for storage.

The role of carbohydrates in the postharvest handling of cut peonies has been examined. Starch is the main storage carbohydrate and the highest levels (58% of total carbohydrates) were attained immediately before flowers open (Fig. 8) (Walton et al. 2007). Walton et al. (2011) noted that during flower opening the rate of starch hydrolysis in the fresh-cut, non-stored flower buds was more rapid than in those still attached to the plant. Not surprisingly, the total sugar concentrations of the flowers, leaves and stems were lower in fresh-cut flowers than in those still attached to the plant. However, the authors estimated that fresh-cut flowers contained enough carbohydrates to provide a total vase life of 8 days, which was much longer than the 4 days estimated to be obtained for less than that of intact flowers. In comparison, intact flowers contained an additional 3.2 g of sugars imported during flower opening, which amounted to nearly 42% of the total carbohydrates. For flowers that were stored 4 weeks, starch in the flower buds was almost completely hydrolyzed, producing similar hexose and higher sucrose concentrations than in fresh-cut stems. Store flowers opened more rapidly, 2 days versus the 5 days for fresh-cut stems, probably because the starch was already hydrolyzed, producing a shorter vase life._____

Floriculture and Ornamental Biotechnology 6 (Special Issue 1), 62-77 ©2012 Global Science Books
than fresh-cut stems. Single petal/flower open more rapidly than those with multiple rows of petals (Walton et al. 2007). The authors (Walton et al. 2010) noted that flowers could be stored for 8 weeks and still have an “acceptable” vase life (Figs. 9, 10).

After dry storage, the stems should be recut and held in a hydrating solution (pH 3.5 using citric acid) at 21°C. A floral preservative should be used after the hydration of the flower stems (Heuser and Evensen 1986; Nowak and Rudnicki 1990). Sucrose pulsing can also be used to accelerate bud opening. Sang et al. (1998) tested 0, 5, 20 or 35% sucrose pulses for either 12 or 24 h and determined that 20% for 24 h provided the optimum solution uptake and fresh weight. Other chemicals have been tested including a 30 min pulse of uniconazol (20 mg L-1), which did not affect vase life (Hamada et al. 1989).

While peony buds are considered to have low sensitivity to ethylene (Dole and Wilkins 2005), Rogers (1995) recommended that ethylene levels during storage be as low as possible and that flowers not be exposed to exogenous ethylene. In addition, a 30 min pulse of 1 mM STS increased the vase life of cut herbaceous peonies by up to 2.5 days, depending on the cultivar (Hamada et al. 1989). Gast (2001) supported these results by noting that a 2-h pulse of 0.463 mM STS extended the vase life of “Shawnee Chief” by up to 2.5 days.

Botrytis. Development of Botrytis is a major issue during postharvest handling and is one of the greatest limitations to storing cut peonies (Nowak and Rudnicki 1990). To reduce Botrytis problems, foliage should be dry (Armitage and Laushman 2003) and plastic sleeves should not be used (Dole and Wilkins 2005). Methyl jasmonate volatilized from a saturated pad enclosed in sealed bags with the stems reduced the disease incidence on buds stored for 6 weeks at 0°C, but not when stored for 8 or 10 weeks and did not affect vase life (Gast 2001).

Dried flowers. While the majority of cut peony flowers are used fresh, the flowers can also be air or freeze dried (Stevens et al. 1993; Gast 1995). Of course, the soft petals shrink considerably, but the medium to dark pink and red cultivars hold their color well. Light pink and white flowers tend to lose their attractive color and become pale brown (Rogers 1995). Double flowered types are generally used as they retain much petal mass after drying. One of the best varieties for drying is ‘Sarah Bernhardt’. Flowers intended for drying can be disbudded, as for fresh sales, or the side buds can be left on the stem, increasing the amount of petal color on the final dried stem. Commercially cut flowers are air dried in dark rooms at 10°C or higher with 60% or lower humidity and ample air movement (Stevens et al. 1993). Foliage is removed from the stems, which are combined into bunches, often of 10 stems, and hung upside down. Flowers for drying are harvested when newly open. Harvesting later may cause the petals to fall before the stems are sufficiently dry.

PEONY GROWING AND PRODUCTION IN DIFFERENT REGIONS

Peony is highly appreciated worldwide as a beautiful garden plant, but, in addition, it is an ornamental crop with an increasing economic importance in global floriculture. In China, ornamental cultivars were developed in the 6th to 7th centuries from the medicinal plants of peony (Tsukamoto 1969). *P. lactiflora* was introduced to Japan before the 10th century and subsequently many cultivars were created by selfing or crossing, especially during the middle Edo period (18th century) to early Showa period (20th century) (Tsukamoto 1984). Cultivars of *P. officinalis* were appreciated in European countries between the 15th and 18th centuries (Tsukamoto 1984; Wister and Holfe 1962). However, intensive breeding for flower shape and color began only in the 19th century, when *P. lactiflora*, native to China, was introduced to Europe (Bailey 1916).
China

The peony is among the most popular flowers in ornamental culture in this country, which has one of the longest histories of cultivating ornamentals in the world (Wister and Holfe 1962; Li 1999; Usbenskaya 2002; Qi 2004). The peony, along with the plum blossom, is one of national emblems of China. It is also known as the "flower of riches and honor," and is used symbolically in Chinese art. During the T'ang dynasty (618-906) peonies became popular in the imperial gardens and were put under imperial protection. During the Sung dynasty, which began at the end of the 10th century, peony cultivation spread throughout China and the Sung capital of Louyang became a centre for peony culture. Louyang is still recognized today as a centre for peony culture, and dozens of peony exhibitions and shows are held there annually.

As new dynasties began and emperors moved their courts, peonies were also moved, further spreading the cultivation of peonies throughout China. During the Ch'ing dynasty of 1644 to 1911, the city of Caozhou became a centre of peony culture. Today this city is known as HeZe and is recognized as the second major peony centre of China. Like Louyang, HeZe holds an International Peony Fair in April each year. Both HeZe and Luoyang host a state funded research facility for peony research. More than 800 ha are dedicated to peony production in these regions. Commercial production is supported by much modern research on flowering physiology, manipulation (Yu et al. 2008; Cheng et al. 2009a, 2009b) and propagation (Zhang et al. 2006; Yu et al. 2008; Gao 2010) as previously described in this text.

Japan

Japanese breeders simplified the flowers and produced lighter, less complicated flower heads with rounded centers surrounded by smaller and wider petals, used to be called in Japanese ebrisugusari ("foreign medicine"), since its root was used as a treatment for convulsions. The Peony was also cultivated as a garden plant and was called the "prime minister of flowers" (Tsukamoto 1984). In 1948, Japanese breeder Toichi Itoh produced intersectional hybrids, which began the breeding of new intersectional varieties, known today as "Itoh Hybrids" (Smith 2004).

Japan is a major peony producer. Growers specialize in either tree or herbaceous peonies and are known for their grafting skills; therefore, a large percentage of the world's tree peony production originates from Japan.

Europe

Until the 18th century, European gardeners cultivated only the herbaceous species. Originally they were grown for their medicinal value, but later their ornamental qualities were appreciated. Tree peonies were brought to Europe in 1789 by Dr. Duncan and planted at Kew Gardens. Many tree peonies are still imported into Europe from Japan or China.

The popularity of peonies in Europe, and particularly in England, declined in the 20th century. Today, however, peonies are undergoing a renaissance of popularity throughout Europe, both as garden plants and as cut flowers. In addition to commercial production of cut flowers, peonies are very popular in European gardens, and several peony societies (German Peony Society, www.paeonia.de; Dutch Peony Society www.danskpaeonselskab.dk; The (British) Peony Society www.thepeonysociety.org.uk) coordinate and share the experience of peony amateurs across Europe.

France

In the late 1800's to early 1900's, European plant breeders J. Calot, F. Crousse, A. Dessert, V. Lemoine, N. Lemon, and E. Méchin worked mainly with *P. lactiflora* to produce numerous varieties, such as 'Le Printemps' and 'Avant Garde', which are still popular. Currently, peony production is concentrated in southeast France, where cultivated areas have increased 10 fold in the last 15 years (Jacob et al. 2006). Contemporary breeding is conducted mainly by many specialized amateur peony aficionados. Only a small number of professionals or companies seem to be involved in breeding peonies (Jacob et al. 2006). In 2008, the annual supply of peony cut flowers from France to the international market reached 1.1 million stems (Looze et al. 2008).

The Netherlands

This small country produces the most peonies worldwide. Dutch producers sell more than 48 million stems annually (Looze et al. 2008) and are the main producers of plant material for foreign peony growers. A large number of cultivars are grown, approximately 50 varieties, with five of them, 'Sarah Bernhardt', 'Karl Rosenfeld', 'Dr. Alexander Fleming', 'Duchesse de Nemours' and 'Shirley Temple', being the most popular. Holland's most important contributions include John, Charles, and Carl Klehm, L. Glasscock, W. Kreckler, E. Auten, M. Bigger, W. Bockstoce, A. Brand, the Wilds, R. Tischler, D. Reath, W. Gratwick. Although fewer people are now breeding peonies, D. Hollingsworth and R. Anderson are still actively working with them.

Commercially, cut peonies have a long history in North America. Wholesale production dates back to at least 1884 when Amasa Kennicott sold cut flowers for $0.01 U.S. per stem to Chicago florists (Rogers 1995). By the early 1900s, the peony was a highly valued cut flower in the United States, used primarily for the Memorial Day holiday (late May). By the 1920s hundreds of thousands of stems were being shipped, often by refrigerated railway cars, to many cities. At one time, more than 1620 ha were in production in the...
Midwest, primarily in Indiana and Illinois (Post 1949). Interest in and production of peonies has fluctuated over the years, especially declining during the 1970s and 1980s. Today, the peony has returned as a specialty cut flower with production from North Carolina on the East Coast to Kansas in the Midwest, and to Oregon and northern California on the West Coast. While much of the peony production is sold locally by small producers, large wholesale growers can be found in North Carolina, Oregon, Wisconsin, and Connecticut. A fledging but rapidly growing cut peony industry has developed in Alaska, taking advantage of its far northern location to allow natural flowering of peonies in June, July and August (Auer and Holloway 2008). The APS is still flourishing today with members from around the world. It holds the official repository for peony registrations, annual exhibitions and shows and publishes an informative quarterly bulletin.

As with the United States, peonies are a beloved garden perennial and cut flower in Canada. Due to their excellent cold hardiness peonies are grown throughout Canada, except for the very far north. Commercial production of crowns and cut flowers takes place in many locations, especially in Ontario and British Columbia. Large scale cut flower production occurs mainly in British Columbia, some of which is marketed through the Vancouver Flower Auction.

The Canadian Peony Society (CPS) was created in 1998. It produces a quarterly bulletin dedicated to sharing the experiences of Canadian peony enthusiasts, to encourage peony breeding, to produce distinctly Canadian peony hybrids and to coordinating an annual National Peony Show.

Russia

Botanical studies of peonies in Russia can be attributed to 1733, when Peter Simon Pallas described more than 10 wild species. Numerous species were identified in Russia and neighboring areas and today the local flora is documented in over 100 species (Chepalevov 1995). The first garden varieties of peonies were introduced to Russia in the 17th century, during the monarchy of Peter the Great. They were cultivated in so-called apothecary gardens for medical and botanical studies. At the beginning of the 19th century, several varieties from French breeders were imported from Europe and were grown in the botanical gardens and private collections of Russian aristocrats (Rubinina 2009).

After World War II, garden peonies became widely cultivated. Many government and scientific institutes gathered significant collections of peonies. Numerous professionals and flower amateurs have taken part in the selection and breeding of local varieties in Moscow, St. Petersburg, Riga, Kiev and other regions. Recent publications (Dudik and Harchenko 1987; Kapinos and Dubrov 1993; Uspenskaya 2002; Rubinina 2009) provide up-to-date information on local and introduced varieties and cultivation methods of garden peonies in Russia. Data on commercial production of cut flowers is not available.

Israel

Peony cultivars were introduced to Israel in the early 1990s. It was quickly apparent that growing peonies in a warm Mediterranean climate was quite challenging and required precise control of plant development. Research on flowering physiology and adaptation to local environmental conditions has provided a basis for the practical production and forcing systems of peony cut flowers for the early market niche (Haley et al. 2002; Kamenetsky et al. 2003; Halevy et al. 2005), and for developing several practical methods for cut flower production (Fig. 11): 1. Plant Reposition: plants are grown in containers and provided with all the necessary environmental conditions for optimal flower development. This method requires precise control of plant development and an in-depth knowledge of the flower's initiation process. With this method a very early crop can be obtained from mid-January onward. 2. Plastic Tunnels: field-grown plants in uncovered greenhouses are exposed to ambient cold temperatures until they receive a sufficient number of predetermined chilling units. Plants are then covered with plastic sheets to increase temperatures. This method requires precise temperature control during dormancy breaking and stem elongation. The resulting plants flower about one month earlier (March-April) than plants grown in open fields. 3. Open Plot: plants are grown in open plots and in net-covered houses for cut flower production in April-May.

The advance of new technologies for peony cultivation, in combination with an in-depth knowledge of plant physiology and requirements, has allowed the speedy and effective development of a new and promising branch of ornamental horticulture in Israel. In 2010, high quality cut flowers of the two most popular varieties ‘Sarah Bernhardt’ and ‘Duchesse De Nemours’ were produced on ca. 50 ha. Twenty other varieties, popular in Europe and the USA, have recently been introduced to Israel and are being evaluated under local conditions.

Southern Hemisphere

In general, field production of peonies for cut flowers has a relatively short harvest season. In most areas of Europe, the USA and Canada peonies can be harvested from mid-April in warmer regions to June in the cooler latitudes. At any one location, a wide variety of cultivars are grown and the harvest season is approximately 6 weeks, if the weather is cool and shorter if warm. However, demand for peonies in the global market has become year-round. With the advent of rapid, relatively inexpensive air freight, Chile and New Zealand in the Southern Hemisphere have seized the opportunity to provide cut peonies during their spring and early summer, from late October (northern Chile, New Zealand) through January (south Patagonia). Other countries are also producing small amounts of cut peonies including Australia and South Africa.

In Chile, cut peony exports have increased from $158,000 US in 2002/03 to $802,700 in 2008/09, most of which was sent to the United States and much smaller amounts to the Netherlands, United Kingdom, Japan, and Germany (Fundación para la Innovación Agraria 2008; Sáez Molina 2012). Peonies are grown from south of Santiago in central Chile to Region XII, the southernmost region in Chile. In the main production areas, harvest begins in mid-November in Region IX, which is in south central Chile around Temuco, and ends in mid to late January in Region XII.

The peony has become important enough in New Zealand that several research projects have been conducted in the country (Fulton et al. 2001; Hall et al. 2007; Walton et al. 2007, 2010). In New Zealand, the majority of cut stems

![Fig. 11 Strategies for commercial production of herbaceous peonies in Israel. Note differences in investment to production, price in international market, and production of flower stems per plant with each strategy. Adapted from Kamenetsky R, Barzilay A, Cohen M (2007) Herbaceous peony for cut flower production: Flowering physiology and cultivation techniques. Acta Horticulturae 755, 121-126, ©2007, with kind permission from the ISHS, Leuven, Belgium.](image-url)
in the Dutch auctions increased from in 2007 £20.5 to 27.9 million, and the peony was ranked number 18 out of 153 taxa. In a few years, the number of stems sold is expected to reach 100 million, while more flowers are sold outside of the traditional early summer production period.

Other major cut stems producers include Israel, France, Germany, Hungary, Poland, and the United States, although for the latter most of the production is sold domestically. A number of other countries have begun to produce cut flowers commercially, including Australia, Chile, China, Italy, Kenya, New Zealand, Portugal, South Africa, Tunisia, and Turkey.

Among the several thousands available cultivars, only a small number are able to produce high quality fresh-cut flowers (Gast et al. 2001; Cheng et al. 2009a; Li et al. 2009). Despite on-going breeding efforts in China, France, the United States, and other countries, the most important varieties have been on the market for many years (Table 3). The top ranked cultivar in the Netherlands and the United States is ‘Sarah Bernhardt’, due to its productivity, color and reliability.

CONCLUDING REMARKS

Peony is one of the most popular garden plants in temperate regions. Thousands of years ago, it was introduced into cultivation in China, and has since spread widely to many countries. Numerous varieties have been developed to satisfy the demand for new colors, fragrance, earliness or lateness, and disease resistance. In the last two decades, peonies have, once again, become popular as cut flowers. This development has created new demands for biological research and the development of production and postharvest technologies. Today, more than 25 countries produce cut peony flowers, with the primary markets in Europe, the USA, and Canada. Cut peony flowers are highly valued in international markets, but are only available for a short time in late spring and early summer in any given production location.

Despite the popularity of cut peonies, several reasons restrict its production and use: long juvenile period, lack of efficient systems for mass propagation and long-term postharvest storage, complicated flowering physiology, and botrytis during postharvest handling. Recent research has significantly promoted the production of high-quality cut flowers.

In general, peonies are grown successfully in temperate, cold-winter climatic zones. Recent development of peony cultivation in Israel, Italy and southeast France aims to fulfill a high demand for early market niches, while cultivation in the Southern Hemisphere provides peony supply during the late seasons in October-January. A recently project in Alaska will bridge the cut stem production between North Europe and USA with production in the Southern Hemisphere. Finally, the global peony network can provide a year-round supply of high-quality cut flowers to international and local markets.

Over recent decades, we have learned that, for successful commercial production breeding of new varieties, in-depth studies of plant development and the improvement of production and shipping techniques are essential. New

Table 3 Top-ten varieties of herbaceous peonies, sold in United Flower auctions (The Netherlands) in 2008 (adapted from Looze et al. 2008)

<table>
<thead>
<tr>
<th>Ranking</th>
<th>Variety</th>
<th>Colour</th>
<th>Stems sold in United Flower Auctions (2008)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sarah Bernhardt</td>
<td>pink</td>
<td>20,471,026</td>
</tr>
<tr>
<td>2</td>
<td>Karl Rosenfeld</td>
<td>bright crimson</td>
<td>5,133,646</td>
</tr>
<tr>
<td>3</td>
<td>Dr. Alexander Flemming</td>
<td>salmon pink</td>
<td>3,387,955</td>
</tr>
<tr>
<td>4</td>
<td>Duchesse De Nemours</td>
<td>cream white</td>
<td>3,271,806</td>
</tr>
<tr>
<td>5</td>
<td>Shirley Temple</td>
<td>white</td>
<td>2,557,066</td>
</tr>
<tr>
<td>6</td>
<td>Flame</td>
<td>pink</td>
<td>2,442,962</td>
</tr>
<tr>
<td>7</td>
<td>Kansas</td>
<td>pink</td>
<td>1,210,112</td>
</tr>
<tr>
<td>8</td>
<td>Kedaked White</td>
<td>white</td>
<td>819,202</td>
</tr>
<tr>
<td>9</td>
<td>Monsieur Jules Elie</td>
<td>purple</td>
<td>590,480</td>
</tr>
<tr>
<td>10</td>
<td>Edulis Superba</td>
<td>pink</td>
<td>508,745</td>
</tr>
</tbody>
</table>
products and techniques must be developed by researchers and breeders in collaboration with efficient producers and satisfied consumers. All components of the production and marketing chain must be linked together in mutually bene-
ficial ways. In the future, special attention should be also
given to the identification of diseases and viral infections,
their control and environmentally-friendly methods of pre-
vention.

ACKNOWLEDGEMENTS

We thank Shimon Levin (Israel), Rene Martorell (Chile), Keith
Funnell (New Zealand), Chengshu Zheng and Hao Zhu (China),
Ko Klaver and Piet Wierstra (U.S.A.), and Vital Berry Marketing
S.A. for sharing their knowledge on peonies.

REFERENCES

American Peony Society. Available online: http://americanpeony.org
Andrieu E, Debussche M, Thompson JD (2007) Size-dependent re-
production and gender modification in the hermaphroditic perennial plant Paeonia offici-
Laushman JM (Eds) Specialty Cut Flowers (2nd Edn), Timber Press, Portland,
OR, pp 437-446
Auer JD, Holloway PS (2008) An introduction to harvesting and selling Alaska
cut flower peonies. AFS Miscellaneous Publication-03, 16 pp
of Horticulture, Macmillan, New York, pp 2432-2433
floral development of ‘Sarah Bernhardt’ peony in Israel. HortScience 37: 300-
303
of Dormancy and Germination, Academic Press, CA, 666 pp
Batygina TB, Vasilyeva VE (2003) Periodization in the development of
flowering plant reproductive systems: Critical periods. Acta Biologica Craco-
viensis, Series Botanica 45, 27-36
of peony caused by Alfalfa mosaic virus. Plant Disease 87, 99
Blewely JD, Black M (1994) Seeds: Physiology of Development and Germina-
tion, Plenum Press, New York, USA, 445 pp
 gibberellic acid, abscisic acid, and benzylammonipine on epicotyl dormancy of
cultured herbaceous peony embryos. Plant Cell, Tissue and Organ Culture
36, 35-43
Byrne TG, Haley AH (1986) Forcing herbaceous peonies. Journal of the Ame-
rican Society for Horticultural Science 111, 379-383
in Paeonia lactiflora in France. Plant Disease 94, 790
Chang MF, Doy II, Yura K (1976) A rod-shaped virus found in the peony ring-
spot. Annales of the Phytopathological Society of Japan 42, 325-328
Cheng F, Gao S, Yu X (2009a) Stage identification and morphological types of
bud maturity or flowering in Paeonia lactiflora cultivars. Acta Horticulturae
Sinica 36, 611-613
ceous peonies: Cultivar selection for forcing culture and effects of chilling
and gibberelin (GA3) on plant development. Acta Horticulturae 57, 357-368
Cherepanov SK (1995) Vascular plants of Russia and neighbouring countries
(in the borders of the former USSR). Mir i Semya, St-Petersburg, 991p (in
Russian)
Danish Peony Society (Dansk Peon Selskab) Available online: http://www.danskpeonselskab.dk
(2nd Edn), Timber Press, New York, NL, pp 720-725
Russian)
temperature and harvest bud maturity on bud opening and vase life of Paeo-
nia lactiflora cultivars. New Zealand Journal of Crop and Horticultural Sci-
cence 30, 61-67
eFloras.org. Available online: http://www.efloras.org
for breaking bud rest using the dynamic model. Acta Horticulturae 232, 76-
81
Evans MR, Anderson NO, Wilkins HF (1990) Temperature and GA3 effect
on emergence and flowering of potted Paeonia lactiflora. HortScience 25, 923-
924
of Horticulture (Vol 8), Garland Publishing Inc, New York, pp 2550-2553
German Peony Society (Fachgruppe Paonien) Available online:
http://www.paeonia.de/
Fishman S, Erez A, Couvillon GA (1997) The temperature dependence of
budding process in plants: Computer simulations of processes studies under
controlled temperatures. Journal of Theoretical Biology 126, 309-321
and molecular approaches. In: Teixeira da Silva JA (Ed) Floriculture, Orna-
mental and Plant Biotechnology: Future Perspectives and Topical Issues (Vol
1), Global Science Books, Isleworth, UK, pp 33-43
Fulton TA, Hall AJ, Catey JL (2001) Chilling requirements of Paeonia culti-
vars. Scientia Horticulturae 89, 237-248
Fundación para la Innovación Agraria (2008) Resultados y lecciones en cul-
tivo de peonías en regiones en IX, X, XI y XII. Serie Experiencias de Inno-
vación para el Emprendimiento Agrario, Chile, 68 pp
and dormancy of tissue-cultured herbaceous peony shoots. Acta Horticultu-
rae 560, 407-410
of tissue cultured herbaceous peony shoots. Acta Horticulturae 725, 471-476
Gabryszewska E, Kawa-Miszczak L (2010) Rooting in vitro and acclimatiza-
tion in the greenhouse of herbaceous peony plantlets. Biotechnologia 2, 172-
179
Galev AH (2010) Stage identification and morphological types of
herbaceous peony as commercial cut flower in Israel. American Society for
Horticultural Science 111, 235-239
Galev AH, Barzilay A, Kamenetsky R (2005) Flowering advancement in
herbaceous peony. Acta Horticulturae 673, 279-286
flowering advancement of herbaceous peonies. HortScience 37, 885-889
Introduction of herbaceous peony as commercial cut flower in Israel. Dopet Meida 5,
58-62 (in Hebrew)
peony shoot and flower development. Scientia Horticulturae 113, 188-195
tab life of cut flower in tree peony and herbaceous peonies using STS and
other chemical compounds. Bulletin of the Faculty of Agriculture, Shimane
University 23, 25-30
Harding A (1917) The Book of the Peony, J.B. Lippincott, Philadelphia, PA,
259 pp
Heuser CW, Ewensen KB (1986) Cut flower longevity of peony. Journal of
the American Society for Horticultural Science 111, 896-899
Hosoki T, Ando M, Kubara T, Hamada M, Itami M (1989) In vitro propaga-
tion of herbaceous peony (Paeonia lactiflora) by a longitudinal shoot-
split method. Plant Cell Reports 8, 243-246
Hosoki T, NagaSako T, Kimura D, Nishimoto K, Hasegawa R, Ohta K,
Sugiyama M, Haruki K (1997) Classification of herbaceous peony cultivars
by random amplified polymorphic DNA (RAPD) analysis. Journal of the Japan-
ese Society for Horticultural Science 65, 843-849
method of herbaceous peony cultivars based on morphological characters and
distribution pattern of flavone flavonol components in the petals. Journal of
the Japanese Society for Horticultural Science 59, 787-794
bud differentiation of Paeonia lactiflora Pall. Journal of Northeast Agroat-
ural University 3, 57-61
Jacob Y, Mastrantuono S, Ferrero F (2006) Improving the efficiency of
herbaceous peony Breeding methods. Acta Horticulturae 714, 59-66
Paeonia L. Scientia Horticulturae 143, 62-74
Herbaceous peony: A review. Kamenetsky and Dole

76

Kapteyn DR, De Vries BM (1993) Peonies in the Garden, Minion, Tumen, Russia, 190 pp (in Russian)

La Pivoineerie D’Aoust Peony Nursery. Available online: http://www.peaconia.com

Wang SY, Feng J, Li L (2004) Peonies, Phytion, Moscow, 208 pp

