Protease Inhibitors and Stress Tolerance

Tantravahi Srinivasan1* · P. B. Kirti2

1 Department of Biotechnology, GIS, GITAM University, Visakhapatnam, Andhra Pradesh, 530 045, India
2 Department of Plant Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad, Andhra Pradesh, 500 045, India

Corresponding author: * saveplants@gmail.com, srinivasan@gitam.edu

ABSTRACT

Plant protease inhibitors (PIs) are extensively studied for their role in defense against pests and pathogens due to their ability to inhibit specific proteases of the intruder. All classes of PIs were found to play important roles in innate host defense mechanisms and are used to develop transgenic plants resistant to pests and pathogens. Recent reports suggest that they have a role in modulating abiotic stress tolerance also. The induction of PIs was observed in response to not only biotic but also abiotic cues suggesting their possible role in abiotic stress responses and in modulating tolerance to various stresses. During biotic stress, pathogen invasion or damage due to herbivory, induces SA/JA-mediated signalling pathways to combat the attack. Abiotic stress induces injury and different conditions like osmotic stress, oxidative stress etc. as long as the causative factor exists in the milieu. Unlike in the biotic stresses, the causative agent in abiotic stress cannot be countered by the plant. Hence, the abiotic stress has to be tolerated by the plant nullifying all its related damages mostly by adjustment through ABA-dependent, and sometimes through an independent pathway. The overexpression of PIs has been shown to enhance abiotic stress tolerance in the transgenic plants suggesting that their role is multidimensional. In this review, we focus on the possible role of PIs in plant growth, and biotic and abiotic stress tolerance.

Keywords: abiotic stress, biotic stress, cross-talk, protease inhibitor

Abbreviations: ABA, abscisic acid; ABRE, ABA-responsive; CDPK, Ca2+-dependent protein kinases; COI1, CORONATINE-INSENSITIVE1; CpTI, cowpea protease inhibitor; EIN4, ETHYLENE INSENSITIVE-4; ERF1, Ethylene Response Factor1; ERS1, ETHYLENE RESPONSE-1; ERS2, ETHYLENE RESPONSE SENSOR-2; ET, ethylene; ETR1, ETHYLENE RESPONSE-1; ETR2, ETHYLENE RESPONSE-2; H2O2, hydrogen peroxide; JA, jasmonic acid; JA-Ile, jasmonoyl isoleucine; JAZ, JASMONATE ZIM-motif; LA, linolenic acid; MAPK, mitogen-activated protein kinase; OPDA, 12-oxo-phytodienoic acid; PI, protease inhibitor; ROS, reactive oxygen species; SA, salicylic acid

CONTENTS

INTRODUCTION .. 59
BIOTIC STRESS AND INDUCTION OF PROTEASE INHIBITORS .. 60
BIOTIC STRESS RESISTANCE BY OVEREXPRESSION OF PI .. 61
MODE OF ACTION .. 61
ROLE OF PROTEASE INHIBITORS IN ABIOTIC STRESS AND ITS TOLERANCE .. 61
ABIOTIC STRESS TOLERANCE BY OVER-EXPRESSION OF PI .. 63
FUTURE PROSPECTS .. 63
REFERENCES .. 64

INTRODUCTION

Plants have sophisticated mechanisms to protect themselves from changing environmental factors, which adversely influence their growth, survival and reproduction. These include both biotic as well as abiotic factors. The stresses in general occur in multitude and plants induce different pathways under the control of various stress hormones to survive unfavourable situations. Hormones like jasmonic acid (JA), salicylic acid (SA), ethylene (ET) are known to be particularly induced under abiotic stress conditions, whereas abscisic acid (ABA) is induced under abiotic stress conditions (Fujita et al. 2006; Cao et al. 2011). The later studies have shown that all the hormones are involved in stress responses and work synergistically or antagonistically with each other (Fujita et al. 2006). The growth hormones viz., cytokinins, auxins, gibberellic acid and brassinosteroids have also been recognized as important players in plant immunity (Mauch-Mani and Mauch 2005; Grant and Jones 2009). As all the stress hormones are induced under biotic and abiotic stress conditions, their downstream pathways are also induced with possible overlapping and crosstalk (Fujita et al. 2006; Abuqamar et al. 2009). The overlapping and crosstalk between different pathways would be modulated by common players for different stresses, which can influence multiple pathways. The basic helix-loop-helix (HLH) transcription factor MYC2 is shown to be involved in the ABA-mediated drought stress signaling pathway (Abe et al. 2003). It was later identified that MYC2 up-regulates the expression of genes that are involved in JA/ET-mediated pathogen defense genes (Anderson et al. 2004; Lorenzo et al. 2004). RD26, a dehydration-responsive NAC transcription factor is involved in regulation of both biotic and abiotic signaling. Its expression is induced by JA, ABA, hydrogen peroxide (H2O2) and pathogen infections, as well as by drought and high salinity (Fujita et al. 2004; Zimmermann et al. 2004). It protects the plants by inducing the gene products that are involved in the detoxification of reactive oxygen species (ROS), defense,
or senescence. Fujita et al. (2006) also reported that RD26 functions at the convergence point between the pathways for pathogen defense, senescence, and ABA-mediated signaling. There are now many such reports suggesting that the commonly induced products of different pathways play a substantial role in biotic and abiotic stress tolerances (Wu et al. 2009; Orsini et al. 2010).

The protease inhibitors are well known for their involvement in biotic stress resistance and are induced by wounding and JA (Green and Ryan 1972; Reymond et al. 2000; Ryan 2000; Sasaki et al. 2001; Ralph et al. 2006; Wasternack 2007; Srivivasan et al. 2009). The first convincing evidence that PIs are a part of the natural defensive chemicals of plants was the demonstration of wounding of tomato and potato leaves by Colorado potato beetles (Leptinotarsa decemlineata) induced a rapid accumulation of PI (1), not only in the damaged leaves, but also in distal, undamaged leaves (Green and Ryan 1972). They are of interest not only as potential sources of resistance against pests and pathogens in transgenic plants, but also as drugs with antiviral and other properties as well as providing markers for studies of plant diversity and evolution (Lawrence and Koundal 2002; Korsinczky et al. 2004). Conconi et al. (1996) have shown that PIs are induced under abiotic stress condition (UV-C radiation) also and many studies have reported subsequently on the induction of PI under abiotic stress conditions and their related signalling molecules (Pernas et al. 2000; Kim et al. 2001; Dombrowski 2003; Capiati et al. 2006). These studies have suggested the involvement of PIs in abiotic stress tolerance also. Later, Huang et al. (2007) for the first time showed by functional characterization that the constitutive expression of PI induced drought stress tolerance in transgenic rice plants. Subsequently, PI expressing transgenic tobacco plants have been reported to exhibit salinity, pH and osmotic stress tolerance (Shan et al. 2008; Srivivasan et al. 2009).

The involvement of PIs in biotic and abiotic stress tolerance is reported and it has been studied extensively in the direction of biotic stress signalling and resistance. In this review we focus on the possible pathways through which PIs are induced under abiotic stress conditions and their role in enhancing abiotic stress tolerance in its transgenic plants.

BIOTIC STRESS AND INDUCTION OF PROTEASE INHIBITORS

The PIs are said to be induced under biotic stresses primarily in wounding by pests and invasion by pathogens (Pearce et al. 1993; Peña-Cortés et al. 1995; Cardenas et al. 2001). The JA dependent pathway plays a major role in the induction of PIs and other stress hormones have synergistic or antagonistic roles (Fujita et al. 2006). The cell damage caused by mastication of pests or by enzymes secreted by pathogens leads to the release of systemin (Pearce et al. 1991) and other wound-signaling peptides (Ryan et al. 2000). Systemin binds to a cell surface receptor kinase and the related mitogen activated protein kinases (MAPKs) and thus, the COI1 complex promotes the ubiquitization of JAZ proteins leading to their proteolysis (Gfeller et al. 2006; Chung et al. 2008).

Myelin basic protein (MBP) is induced by the enzyme JA: amino synthetase, specifically known as jasmonate resistant 1 (Guranowski et al. 2009). The absence of JA or its presence at low levels does not induce the expression of defense genes and the JASMONATE ZIM-motif (JAZ) proteins repress the expression of JA-responsive genes by interacting directly with the basic helix-loop-helix transcription factor MYC2 (Gfeller et al. 2006; Chung et al. 2008), which is a positive regulator of JA-responses (Lorenzo et al. 2004; Chini et al. 2007). CORONATINE-SENSITIVE1 (COI1) is a Leu-rich repeat/F-box protein that determines the substrate specificity of the SCF-type E3 ubiquitin ligase, SCFCOI (Xu et al. 2002; Chung et al. 2008). The increase in jasmonyl isoleucine (JA-Ile) stimulates the binding of JAZs to COI1 and thus, the COI1 complex promotes the ubiquitization of JAZ proteins leading to their proteolysis (Gfeller et al. 2006; Chung et al. 2008). MYC2 proteins are now free to interact with the defense genes (Gfeller et al. 2006).

The pathway of JA synthesis has been studied extensively in many plants, but the downstream signalling of JA to induce PIs and other defense proteins was reported in Arabidopsis (Fig. 1; Gfeller et al. 2006; Chung et al. 2008).

JA is functionally inactive until it is activated by its conjugation to hydrophobic amino acid, L-isoleucine, mediated by the enzyme JA: amino synthetase, specifically known as jasmonate resistant 1 (Guranowski et al. 2007; Walter et al. 2010). The absence of JA or its presence at low levels does not induce the expression of defense genes and the JASMONATE ZIM-motif (JAZ) proteins repress the expression of JA-responsive genes by interacting directly with the basic helix-loop-helix transcription factor MYC2 (Gfeller et al. 2006; Chung et al. 2008), which is a positive regulator of JA-responses (Lorenzo et al. 2004; Chini et al. 2007). CORONATINE-SENSITIVE1 (COI1) is a Leu-rich repeat/F-box protein that determines the substrate specificity of the SCF-type E3 ubiquitin ligase, SCFCOI (Xu et al. 2002; Chung et al. 2008). The increase in jasmonyl isoleucine (JA-Ile) stimulates the binding of JAZs to COI1 and thus, the COI1 complex promotes the ubiquitization of JAZ proteins leading to their proteolysis (Gfeller et al. 2006; Chung et al. 2008). MYC2 proteins are now free to induce the PIs and other defense genes (Chini et al. 2007; Thines et al. 2007). The different steps in the pathway have been detailed out in Fig. 1.

JA-dependent gene expression is influenced by ET and ABA under the attack of pathogens (Adie et al. 2007; Fan et al. 2009). The synergistic effect of JA and ET in the activation of defenses against necrotrophs can be explained by the concerted activation of Ethylene Response Factor1 (ERF1), which induces defense gene expression and plant resistance (Berrocal-Lobo et al. 2002; Lorenzo et al. 2003).
However, in response to wounding, ET and JA antagonize one another and this depends on the balance of activation of ERF1 and MYC2 by both these hormones (Lorenzo et al. 2004). ABA synergizes with JA and exhibits a complex antagonistic relationship with SA during disease development. ABA accumulation precedes the onset of JA induction suggesting that ABA may promote JA accumulation and enhance JA action (Fan et al. 2009). The role of ET and ABA in the induction of PI under abiotic stress conditions is discussed later.

BIOTIC STRESS RESISTANCE BY OVEREXPRESSION OF PI

The physiological functions of plant PIs are basically the regulation of endogenous proteases and as a repository of proteins (storage proteins) (Mosolyog et al. 2001; Shewry 2003). The PI gene expression has been detected in leaves of several species following wounding suggesting their role in protecting plants from insect attack and microbial infection. The possible role of PIs in plant protection was envisaged as early as 1947, when Mickel and Standish observed that the larvae of certain insects were unable to develop normally on soybean products (Haq et al. 2004). The defensive role of PIs is based on their inhibition of the digestive enzymes of the insect and other pathogen related proteases involved in some vital processes resulting either in a critical shortage of essential amino acids (Hilder et al. 1993; Jongsm and Bolter 1997) or interfering with important biochemical or physiological processes of insects and other pathogens, such as the proteolytic activation of enzymes, molting of insects, or replication of viruses (Gutierrez-Campos et al. 1999). The activity of PIs is due to their capacity to form stable complexes with target proteases thereby blocking, altering or preventing access to the enzyme active site. Support for a defensive role of plant PIs initially came from studies of insects raised on artificial diets containing PIs and in vitro inhibition assays of insect gut proteases with purified PIs from various plant sources. The results of these studies strongly implicate plant PIs in interference with the growth and development of many phytophagous insects (Reec and et al. 1997). The correlation between the levels of PIs present in seeds of various cowpea varieties and the resistance to a major insect pest (Callosobruchus maculatus) also indicated a protective role for PIs in crops (Gatehouse et al. 1979). The direct evidence for the involvement of PIs in the plant defense system has come from studies on transgenic plants. As their role as inhibitors is simply achieved by the activation of single genes, there is a potential to control the expression of PIs in transgenic plants (Gatehouse et al. 2002). A cowpea protease inhibitor (CpTI) was shown for the first time to confer resistance to feeding by the tobacco budworm (Heliothis virescens), when the CpTI gene was expressed in transgenic tobacco (Hilder et al. 1987). Since then, many insect-resistant transgenic plants have been generated. Plant proteinase inhibitors are also known to confer natural as well as engineered protection against nematode attack (McPherson and Harrison 2001; Atkinson et al. 2003). Nematode control with PIs expressed in transgenic tomato (Urw et al. 1995), Arabidopsis thaliana (Urw et al. 2000) and rice (Vain et al. 1998) has been well demonstrated and the technology has been patented (Hepher and Atkinson 1992). Transgenic tobacco plants expressing rice cysteine proteinase inhibitor showed enhanced resistance against potyviruses (Gutierrez-Campos et al. 1999). Proteinase inhibitors have also been implicated to play a role in the plant’s natural defense towards fungal infections (Soares-Costa et al. 2002). Trypsin inhibitors (TI) from buckwheat seeds (Dunaevskii et al. 1994) and trypsin and chymotrypsin inhibitors from cabbage foliage (Lorito et al. 1994) have been shown to have antifungal activities. Thus, the PIs are proved to confer biotic stress tolerance effectively upon overexpression.

MODE OF ACTION

It is well known that protease inhibitors act against specific proteases. PIs interact with their target proteases by contact with the active (catalytic) site of the protease resulting in the formation of a stable protease-inhibitor complex that is incapable of enzymatic activity (Norton 1991). The mechanism of action of these PIs has been the subject of intense investigation (Barrett 1986; MacPhalen and James 1987). Knowledge on mechanisms of protease action and their regulation in vitro and in vivo, in animals, plants, microorganisms and more recently in viruses has been reported and the inhibitory action of PIs over insect proteases was extensively studied (Lawrence and Koundal 2002).

The proteases in insects digest the protein content of the ingested food and these are secreted in the insect midgut depending on the protein content of the food rather than its volume (Baker et al. 1984). The secretion of proteases has been attributed to two mechanisms, involving either a direct effect of food components (proteins) on the midgut epithelial cells, or a hormonal effect triggered by food consumption (Appleby 1985). The digestive proteolytic enzymes in the different orders of commercially important insect pests belong to one of the major classes of proteases predominantly. Coleopteran and Hemipteran species tend to utilize cysteine proteases (Murdock et al. 1987), while Lepidopteran, Hymenopteran, Orthopteran and Dipteran species mainly use serine proteases (Ryan 1990; Wolfson and Murdock 1990). PIs inhibit the protease activity of these enzymes thereby reducing the quantity of proteins that can be digested. Coupled with this, the hyperproduction of the digestive enzymes enhance the loss of sulphur containing amino acids (Shulke and Murdock 1983) as a result of which, the insects become weak with stunted growth and ultimately die.

The commonly accepted mechanism of binding of the plant PIs to the insect proteases appears to be similar with all the four classes of inhibitors. The inhibitor binds to the active site on the enzyme to form a complex with a very low dissociation constant (10 to 10^14 M at neutral pH values), thus effectively blocking the active site. A binding loop on the inhibitor usually "locked" into conformation by a disulphide bond projects from the surface of the molecule and contains a peptide bond (reactive site) cleavable by the enzyme (Terra et al. 1996; Walker et al. 1998). This peptide bond may be cleaved in the enzyme inhibitor complex, but the interaction of a hydrolyzed inhibitor molecule is bound similar to an unhydrolyzed one. The inhibitor thus directly mimics a normal substrate for the enzyme, but does not allow the normal enzyme mechanism of peptide bond cleavage to restore the in vivo dissociation of the product (Walker et al. 1998).

ROLE OF PROTEASE INHIBITORS IN ABIOTIC STRESS AND ITS TOLERANCE

The common observation that PIs are wound inducible (Peña-Cortés et al. 1991; Pearce et al. 1993) initially led to the studies focusing on their role in biotic stress (Johnson et al. 1989; Klopfenstein et al. 1997). The involvement of PI in biotic stress resistance was very well documented explaining their induction, mode of action, insect resistance etc (Green and Ryan 1972; Pearce et al. 1991; Ryan et al. 2000). Plant hormones like JA and its derivatives, ABA, ET, etc. are reportedly involved in the upregulation of PI as a part of biotic stress response in the plants and these hormones are known to be induced even under abiotic stress conditions (Peña-Cortés et al. 1992; Kim et al. 2001). Thus, earlier studies using hormones in PI induction have suggested the possibility of their involvement in abiotic stress responses. The later studies under different abiotic stress
conditions confirmed that the PI s are also induced as a response to abiotic stresses.

The expression of PIs in response to drought or salinity stress has been studied by various groups. PIs from chestnut, barley, rice were induced by drought and salinity (Pernas et al. 2000; Gaddour et al. 2001; Huang et al. 2007). Some PIs are induced only through one of the two above mentioned conditions explaining that different PIs are possibly induced under different conditions based on their promoter elements. This also explains that a separate set of PIs respond to abiotic stress conditions with the possibility of overlapping functions.

Salt-induced PI expression was observed at 100 to 300 mM of NaCl up to 24 h in some studies (Dombrowski et al. 2003; Srinivasan et al. 2009) and progressive drought up to 30 days has also reportedly induced PI expression (Dow- nham et al. 1992; Kang et al. 1996). Even though salt induces drought like condition and both the stresses have oxidative stress in common, PIs that are induced by drought are not always induced by salinity and vice versa, indicating that the induction of PIs follows independent and may be, interlinked mechanisms. Apart from salinity and drought stresses, other abiotic stresses also induce PIs. Brassica PI containing a Kunitz-type PI motif was induced by progressive drought and heat stresses from 30–40°C up to 72 h (Sato et al. 2001). A cystatin was shown to be induced in chestnut by cold shock at 4°C for 4 weeks and heat stress at 32 or 40°C for 3–8 h (Pernas et al. 2000). Also, the exposure to UV-C radiation up to 25 h resulted in the synthesis of PI in tomato (Conconi et al. 1996). All these studies suggest that the PIs are also involved in abiotic stress responses, though their role in abiotic stress tolerance is yet to be clearly defined.

Many abiotic stress conditions induce the PIs and the plants respond to these stresses through the signalling of stress hormones like JA, ABA, ET (Peña-Cortés et al. 1995; Moons et al. 1997; Fujita et al. 2006). JA is induced in response to abiotic stresses like ultraviolet radiation (Conconi et al. 1996), ozone (Rao et al. 2000), drought (Fujita et al. 2004), etc. It is explained that under these conditions, PIs are induced and JA is also known to be a potent inducer of PIs. The induction of JA under abiotic stress conditions is not clearly explained, but there are some studies that report the crucial players in the process (Fujita et al. 2006). Dombrowski (2003) has reported that the tomato mutant (def-1) with an impairment in the octadecanoid pathway displayed severe reduction in the accumulation of proteinase inhibitors under salt stress indicating that salt stress-induced accumulation of PIs was jasmonic acid dependent. Prosysteine protease was not necessary for the induction of PIs, but is required for inducing to higher levels. Similarly, it has also been shown that mechanical wounding increases salt stress tolerance through the involvement of systemin and JA (Capiati et al. 2006).

Abiotic stress also can induce wounding (Cheong et al. 2002) and is associated with other stresses like oxidative, osmotic and dehydration stresses (Boudsocq and Laurentre 2005). The stress perception and downstream signalling involve ROS and higher levels of stress enhance ROS production, which results in oxidative stress. Thus, ROS is a common denominator for all biotic and abiotic stresses. The osmotic stress is also induced by the accumulation of sodium chloride, heavy metals and others in the vicinity of plants. The variation in the internal and external concentration of ions in the cell would lead to osmotic stress. Salt stress also decreases the absorption of water by the plant thereby creating drought stress (Zhu 2001). The initial stress and its latently induced stresses would result in enhanced ROS levels, which would influence different pathways along with the other stress responsive products. There are two major pathways that influence the production of JA under these conditions (Fig. 1). In one pathway, ROS can directly influence calcium levels, which induce the production of JA through different Ca2+-dependent protein kinases (CDPKs) (Song et al. 2005). In the other pathway, ROS can directly induce MAPKs, which, through unknown mechanisms, would stimulate the production of JA (Seo et al. 2009; Heinrich et al. 2011).

Earlier studies have reported that cytosolic calcium levels increase in plant cells in response to multiple adverse environmental conditions including salinity, drought, cold, pathogen attack, and mechanical wounding (Nurnberger and Scheel 2001; Xiong et al. 2002). The enhanced calcium levels activate phosphorylation/dephosphorylation cascades by interacting with sensors such as calmodulin, CDPKs (Harper et al. 2004; Bouché et al. 2005). The CDPKs are said to be induced in response to several environmental stresses suggesting that these kinases could function as cross-talk mediators between signalling pathways leading to cross tolerance (Sanders et al. 2002; Harper et al. 2004). CDPK1 in tomato was found to induce salinity tolerance and also involved in the expression of wound induced genes. This was also proposed to be the cross talk node between salt and wound signalling pathways (Capiati et al. 2006; Fig. 2). The CDPKs induce the synthesis of JA directly through the octadecanoid pathway (Ludwig et al. 2005) thereby leading to the production of PI. The CDPKs also induce NADPH oxidase, which influences the synthesis of H2O2 that in turn influences the production of JA (Hu et al. 2003; Ludwig et al. 2005).

Ethylene (ET) is reported to be induced by ozone, freezing, drought stress etc (Seki et al. 2002; Zhao et al. 2004). The induced ET is perceived by five different receptors namely ETHYLENE RESPONSE-1 (ETR1), ETR2, ETHYLENE RESPONSE SENSOR-1 (ERS1), ERS2, and ETHYLENE INSENSITIVE-4 (EIN4) (Chen et al. 2005; Benavente and Alonso 2006; Etheridge et al. 2006). The receptors pass the signal downstream to transcription factors like EIN3, which in turn activate other key transcription factors like ETHYLENE RESPONSE FACTOR-1 (ERF1). ERF1 is known to influence the expression of defense genes (PI) and it is also said to be the integration point between the ET and JA pathways (Solano et al. 1998; Lorenzo et al. 2003). The signalling in wounding induces PI due to the synergistic effect of JA and ethylene, but in abiotic stress.
conditions this was not reported (Lorenzo et al. 2003; Adams and Turner 2010).

Abiotic stresses like drought, salt, low-temperature, osmotic variation etc induce the accumulation of ABA that plays a crucial role in plant adaptation to abiotic stresses (Finkelstein et al. 2002; Fujita et al. 2006). The induced ABA persuades changes in Ca^{2+} levels through the regulation of calcium channels by IP3, thus leading to the activation of different kinases (Takahashi et al. 2003; Chinnusamy et al. 2004). The kinases are further involved in the activation of transcription factors that induce the down-stream signalling process. The ABA induced expression often relies on the presence of the cis-acting element called ABRE element (ABA-responsive element) in the promoters (Yamaguchi-Shinozaki et al. 1990; Shinozaki and Yamaguchi-Shinozaki 2000). The basic leucine zipper transcription factors called AREB bind to ABRE elements in these promoters and induce the stress responsive genes (Hobo et al. 1999; Choi et al. 2000). Other transcription factors such as the MYC and MYB proteins etc are also involved in ABA-responsive signal transduction and they interact with their corresponding cis-acting elements such as DRE/CRT, ABRE and MYCRS/MYBRS, respectively (Fujita et al. 2004; Tuteja 2007). In Arabidopsis, MYC2 was reported to be involved in the ABA mediated drought stress signalling pathway (Urao et al. 2003; Fujita et al. 2006). Similarly, the MYC2 was also known to induce defense genes in JA-mediated responses and thus, MYC2 seems to be a nodal protein of the stress. But, the optimum or higher levels of the respective protein(s) is produced constitutively in the transgenic plants due to the overexpression of the relevant gene. The responses will be different in wild type and transgenic plants in any given stress condition. Hence, the above discussed mechanisms would not be appropriate to explain the response of PI transgenics to different abiotic stress conditions.

The ROS normally act as signaling molecules in the cell and changes in the surrounding environment are also transduced into the cell by elevation in the levels of ROS, which above a threshold level, impart toxic effects (Mittler 2002; Reape et al. 2009). The intensity of ROS depends on the pH and osmotic stress tolerance exhibited by PI transgenics (Huang et al. 2002; Fujita et al. 2003; Fujita et al. 2006). The ROS could also be due to the control of H^{+} and other ion absorption phenomena (Breusegem and Dat 2006; Reape et al. 2009). Hydrolytic enzymes are produced at higher and persistent ROS levels for initiation of cell death (Shan et al. 2008; Srinivasan et al. 2009). Thus, it can be postulated that the PI transgenics inhibit proteases, which degrade proteins that regulate ion channels and Kna1, there might be other mechanisms that favor the transgenics.

ABIOTIC STRESS TOLERANCE BY OVER-EXPRESSION OF PI

Under natural abiotic stress conditions, plant tries to induce proteins and non-protein molecules to overcome the effects of the stress. But, the optimum or higher levels of the respective protein(s) is produced constitutively in the transgenics by the overexpression of the relevant gene. The responses will be different in wild type and transgenic plants in any given stress condition. Hence, the above discussed mechanisms would not be appropriate to explain the response of PI transgenics to different abiotic stress conditions.

The ROS normally act as signaling molecules in the cell and changes in the surrounding environment are also transduced into the cell by elevation in the levels of ROS, which above a threshold level, impart toxic effects (Mittler 2002; Miller et al. 2008). The intensity of ROS depends on the level of stress. Hence, the higher the stress, the greater the level of ROS. A rise in the level of ROS could be connected to an attempt of the cell to survive against the alarming conditions rather than mere destruction of itself (Mittler et al. 2004; 2008). The changing levels of ROS induce stress hormones for further signaling at basal and primary stress induced metabolisms (Kwak et al. 2006; Bogatek and Gniazdowska 2007). Hydrolytic enzymes are produced at higher and persistent ROS levels for initiation of cell death phenomenon (Breusegem and Dat 2006; Reape et al. 2008). These stress hormones induce enzymatic and non-enzymatic antioxidants to curb the effects of elevated ROS (Mittler et al. 2004, 2011). The other stress responsive proteins are also induced for holistic stress tolerance. The hydrolytic enzymes induced at higher levels of ROS will degrade the cell and the major enzymes induced are proteases. The proteases degrade the protein pool of the cell, which includes stress responsive proteins, membrane proteins etc, thus making the cell to succumb to the stress (Fig. 3).

The protease inhibitor transgenics have been shown to exhibit enhanced tolerance to abiotic stress conditions like drought, salinity, osmotic variations and pH (Huang et al. 2007; Shan et al. 2008; Srinivasan et al. 2009). The protein degradation and recycling are induced in plants that are subjected to abiotic stress conditions (Ingram and Bartels 1996; El-Maarouf et al. 1999; Sahi et al. 2006). Protein degradation can be controlled by curbing the proteases and the PIs are the proteins that control this protease activity. The constitutive expression of PIs directly has the advantage of controlling over the activity of proteases and enhanced protease inhibitory activity is reported in PI transgenics (Huang et al. 2007; Srinivasan et al. 2009). However, the mechanism by which the PI expressing transgenic plants exhibit enhanced tolerance is not completely understood as inhibition of proteases would not have a direct relation to stress tolerance. The salinity tolerance exhibited by TI or Bowman-Birk transgenics is reported to be by the inhibition of sodium translocation to other parts of plant from the root system (Shan et al. 2008; Srinivasan et al. 2009).

The rationale behind this phenomenon to occur in the transgenics is by the regulation of ion channels and discrimination of Na^{+}/K^{+} in the stem region. The Na^{+}/K^{+} discrimination is performed by Kna1 in wheat by sensing the ratio of K/Na (Flowers 2004). Thus, it can be postulated that the PI transgenics inhibit proteases, which degrade proteins that regulate ion channels or Kna1, and related proteins. The pH and osmotic stress tolerance exhibited by PI transgenics could also be due to the control of H^{+} and other ion absorption. The complete mechanism of abiotic stress tolerance in these transgenics needs a thorough analysis and apart from ion channel regulation and Kna1, there might be other mechanisms that favor the transgenics.

FUTURE PROSPECTS

The reports of PI involvement in abiotic stress tolerance are very encouraging. It is essential to analyze in depth the role of PIs in conferring abiotic stress tolerance in transgenic plants. This raises several important questions which need to be addressed to understand the mechanism of PI conferred abiotic stress tolerance, which include: why only a specific set of PIs are induced by a specific kind of stress? Does the overexpression of the PI lead to stress tolerance under which it was induced? Why some PIs are only induced under multiple stress conditions? Are they involved in any crosstalk between the multiple stresses?

The earlier reports suggest that PIs produced in the transgenics inhibit the proteases and thus the stability of vital cellular proteins and enzymes increases leading to enhanced stress tolerance. The PIs are specific to proteases and therefore, which proteases are being inhibited and which proteins and enzymes are escaping the activity of proteases is the key question that needs a thorough analysis.
Studies need to be conducted to know which proteases are being blocked by the overexpressed PI in the transgenic plants and thus, which proteins or enzymes are being protected by the derivative action of the stress induced proteases. It is known that many proteases are induced under stress conditions and PIs specifically inhibit few proteases. Hence, what is the fate of remaining uninhibited proteases? Would they have any deleterious effect on the plant metabolism under stress?

The studies on transgenic PI plants did not report any negative impact of the over expression of the PI in the transgenic plants. Are the PIs in higher concentration not inhibiting any vital proteases that will affect the normal survival of the plants? How can the PIs specifically inhibit the proteases during stress and not during the regular growth? If the PIs are blocking the proteases during normal growth also, then it is possible that this drawback does the plant have any alternate mechanisms for controlling the protein turnover or and eliminating utilized proteins. The research in this direction will be exciting and may uncover several important functions of proteases and PIs in plant growth and survival.

REFERENCES

Abé H, Urao T, Ita T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AIMCYC2 (bHLH) and AIMBY2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15, 63-78
Bodoșcoă M, Laurière C (2005) Osmotic signaling in plants: Multiple path-ways mediated by emerging kinase families. FEBS Letters 581, 89-95
Boudsocq M, Laurière C, Yamaguchi-Shinozaki K, Shinozaki K, Benavente LM, Alonso JM, Ryan CA (2010) The research in this direction will be exciting and may uncover several important functions of proteases and PIs in plant growth and survival.

Annals of Botany 95, 901-915
Heinrich M, Baldwin TT, Wu J (2011) Two mitogen-activated protein kinase kinases, MKK1 and MEK2, are involved in wounding- and specialist lepi-

dipos by cDNA macroarray: Self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signalling pathways. *DNA Research* 8, 153-161

Scheer JM, Ryan CA (2002) The systemin receptor SR160 from *Lycopersicon esculentum* is a member of the LRR receptor kinase family. *Proceedings of the National Academy of Sciences USA* 99, 9585-9590

Stratmann J, Ryan CA (1997) Myelin basic protein kinase activity in tomato leaves is induced systemically by wounding and increases in response to system and oligosaccharide elicitors. *Proceedings of the National Academy of Sciences USA* 94, 11085-11089

