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ABSTRACT 
Nucleotide sequence information available in searchable sequence databases and the free in silico software with which to extract and 
analyze microsatellite data continues to grow at a rapid rate across eukaryote taxa. The sheer amount of information available means that 
a comprehensive or exhaustive review of databases and free bioinformatic tools lies beyond the purview of any journal review. The 
purpose of this review is therefore to provide targeted information aimed at helping the insect and plant biologist effectively utilize in 
silico resources to find, navigate and analyze empirically derived data from sequence databases. The objectives are threefold. First, since 
the basic characteristics of microsatellites make them the markers of choice for studies of genetic structure that underlie adaptation and 
evolution, these will be delineated. Second, because sequence databases are increasingly mined for microsatellites, the major databases 
are discussed, as well as, available programs for in silico mining of sequence databases to retrieve microsatellites for a species of interest. 
Lastly, a general review is given of population genetics software for in silico genetic analyses of microsatellite data to determine 
population genetic structure, phylogenetic relationships, and genetic diversity in a species of interest. 
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INTRODUCTION 
 
In 1981, population genetics got an analytical boost when 
the sequence analysis of the human � globin locus revealed 
microsatellites (Miesfeld et al. 1981; Spritz 1981), which 
are now known to be powerful DNA markers (Wang et al. 
2006) and pervasive class of repetitive DNA (Bhargava and 
Fuentes 2009). Since then this marker (Wang et al. 2006) 
has significantly contributed to research in population gene-
tics (Zhang and Hewitt 2003). They have provided insights 
into the effects of gene flow on the genetic structuring of 
populations (Jarne and Lagoda 1996; Chambers and Maca-
boy 2000; Jenkins et al. 2002; Edh et al. 2007; Roratto et al. 
2008) with implications for the evolutionary processes 
underlying population genetics and conservation biology 
(Balloux and Lugon-Moulin 2002; Lawson and Zhang 
2006). Also, since plants and herbivorous insects are “inex-
orably intertwined” (Futuyma and Agrawal 2009), micro-
satellites provide a tool with which to study insect-plant 
dynamics within an evolutionary and community ecology 
paradigm. 

Microsatellites are non-randomly distributed (Li et al. 

2002) in coding, non-coding and regulatory regions (Wang 
et al. 1994; Li et al. 2002, 2004; Zhang et al. 2004; Lawson 
and Zhang 2006; Hisano et al. 2007) in eukaryotic nuclear 
(Goldstein and Schlotterer 1999; Toth et al. 2000; Roy et al. 
2004; Legendre et al. 2009) and organelle (Cato and 
Richardson 1996; Rajendrakumar et al. 2008) genomes. 
Thus, since they are located in transcribed regions of the 
genome, e.g. expressed sequence tags (ESTs) and open 
reading frames (ORF) (Morgante et al. 2002), they are well 
suited for studying gene function, regulation, and recombi-
nation phenomena (Biet et al. 1999; Lawson and Zhang 
2006; Guo et al 2009). 

High through-put sequencing, the by-product of rapid 
growth biotechnology (Wang et al. 2009) and high through-
put, low cost machinery, has directly contributed to the ex-
ponential expansion of sequence data in databases. In silico 
(e.g. performed on the computer), software has therefore 
been developed as an aid for the identification of individual 
sequences deposited in these databases which contain micro-
satellite repeats. Once the appropriate desired sequences are 
identified from in silico analysis, microsatellite-targeting 
and species-specific primers can be designed from websites 
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such as Primer3 to amplify polymorphic loci. This synergy 
among biotechnology, sequence database expansion, and 
the growth of in silico analyses has resulted in techniques 
for developing microsatellites faster and more cost-effec-
tively (Abdelkrim et al. 2009) than conventional methods, 
which rely on the creation and screening of genomic lib-
raries enriched for repeat motifs (Zane et al. 2002, a re-
view). As whole eukaryotic genome-sequence initiatives 
(Table 1, NCBI eukaryotic genome-sequence initiatives), or 
species specific database “genome projects” have become 
routine with next generation sequencing and so are in silico 
protocols designed to simply search or mine entire genome 
databases (Jayashree et al. 2006; Sharma et al. 2007; Mik-
heyev et al. 2010) in order to retrieve microsatellites or 
other desired genes/targets. 

Microsatellites, whether developed conventionally or 
through in silico methods, are currently relatively easy to 
generate and evaluate. Polymerase chain reaction (PCR) 
products are observed as bands on an electrophoresis gel; 
and, as such are highly adaptable to computer managed 
high throughput biotechnologies (Schlipalius et al. 2001; 
Wang et al. 2009) which generate and organize large data-
sets necessary to minimize statistical error. Multiple primer 
sets are often combined or multiplexed into a single reac-
tion (Tang et al. 2003; Dzialuk et al. 2005) because each 
microsatellite forward and reverse primer set is locus-spe-
cific (Zhang and Hewitt 2003) or specific for a unique con-
served genome region (Li et al. 2004) 5' and 3' of the repeat 
motif. This phenomenon further facilitates high throughput 
(Schlipalius et al. 2001; Wang et al. 2006, 2009a, 2009b; 
Raabova et al. 2010) computer managed genotyping (Wang 
et al. 2009a) necessary for in depth population analyses. 
These characteristics among other inherent phenomena 
make microsatellites applicable to population genetics stu-
dies (Arthofer et al. 2007). 

Microsatellites are generally variable among individuals 
within and between populations (Goldstein and Pollock 
1997). But, allele length appears to be constrained (Schlot-
terer 1988; Nauta and Weissing 1996; Goldstein and Pol-

lock 1997; Colson and Goldstein 1999) and under the influ-
ence of selection (Li et al. 2000; Morgante et al. 2002) gene 
conversion, or nonreciprocal recombination (Richard and 
Pâques 2000). They are also subject to size homoplasy in 
nuclear (Curtu et al. 2004; Barkley et al. 2009) and orga-
nelle (Hale et al. 2004) genomes, i.e. alleles that are the 
same size but are not homologous or the result of common 
ancestry (not identical by descent), but arose independently 
by parallel or convergent mutations in different ancestors. 
Size homoplasy, if significant, has been shown to affect the 
interpretation of the phylogeny and population structure 
(Viard et al. 1998) results produced from in silico analysis 
of microsatellite data. This caveat to the use of micro-
satellites (Curtu et al. 2004) means that they should be veri-
fied by sequencing alleles prior to being used in population 
genetic studies to rule out homoplasy (Anmarkrud et al. 
2008), a topic which will be discussed in more detail in a 
later review. 

This is not intended to be an exhaustive or comprehen-
sive review of databases and free population genetics soft-
ware. The exponential growth of nucleotide sequence infor-
mation across eukaryote taxa in the last few years as well as 
the in silico software capable of analyzing it makes this im-
practical in the extreme. The objectives of this review are 
therefore to: define the basic characteristics of microsatel-
lites which make them the markers of choice for studies of 
genetic structure that underlie population structure and 
adaptation; guide researchers to web databases, which can 
be used to mine for microsatellites; and, help the researcher 
locate free population genetics software for in silico ana-
lyses of genetic structure. This review is also not meant to 
endorse any web-based site or software package. But, it is 
meant to be a bridge from which to navigate the vast data-
bases and in silico analysis resources available to the insect 
and plant biologist at the beginning of the 21st century. 
 
 
 
 

Table 1 Alphabetical order of all topics and corresponding websites referred to in the body of the paper. 
Topic Website 
Allain Andry http://www.genomicslawreport.com/index.phy/tag/whole-genome-sequencing  
Bioinformatics tools http://softlinks.amnh.org/microsatellites.html ; http://courses.washington.edu/fish543/software.htm
CIB-DDBJ http://www.cib.nig.ac.jp  
CMD http://www.cottonssr.org  
DDBJ http://www.ddby.nig.ac.jp  
DDBJ overview http://www.www.ddby.nig.ac.jp.introe.html  
EMBL http://www.ebi.ac.uk/embl  
EMBL overview http://www.embl.de/aboutus/general_information/mission/index.html  
Eukaryotic Genome-Sequence Initiatives http://www.ncbi.nlm.nih.gov/sites/entrez?db=genome 
GenBank http://www.ncbi.nlm.nih.gov/genbank  
GenBank funding http://www.lanl.gov/orgs/pa/News/112100.html  
GOBASE http://gobase.bcm.umontreal.ca  
IGGP http://www.vitaceae.org/index.php/International_Grape_Genome_Program  
InSatDB http://www.cdfd.org.in/insatdb  
INSDC http://www.insdc.org; http://www.ddbj.nig.ac.jp/intro-e.html  
Mayer C (2006-2010) http://www.rub.de/spezzoo/cm/cm_phobos.htm  
MICROSAT http://hpgl.stanford.edu/projects/microsat/programs  
NAR Database Summary Papers Category List URL http://www.oxfordjournals.org/nar/database/a/  
NCBI http://www.ncbi.nlm.nih.gov  
NCBI text-based Entrez http://www.ncbi.nlm.nih.gov/Database  
NCBI eukaryotic genome-sequence initiatives http://www.ncbi.nlm.hin.gov/sites/entrez?db=genome  
Nucleic Acids Research http://nar.oxfordjournals.org  
Paul Evans Library of Fruit Science http://library.missouristate.edu/paulevans/grapegen.shtml  
Phylogenetic analysis, evolution http://evolution.genetics.washington.edu/phylip/software.html ; 

http://softlinks.amnh.org/microsatellites.html 
Primer3 http://frodo.wi.mit.edu/primer3  
RepeatMasker Open-3.0 http://www.repeamasker.org  
SilkSatDb http://www.cdfd.org.in/silksatdb  
Small Genomes Microsatellite Database http://www.genomics.ceh.ac.uk/cgi-bin/sgmd/index.cgi  
STRUCTURE http://www.pritch.bsd.uchicago.Edu.software/structure2_1.html  
WHC http://wheat.pw.usda.gov/ggpages/ssr/WMC  
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MICROSATELLITES CHARACTERISTICS AND 
DIVERSIFICATION 
 
Microsatellites are often referred to as simple sequence 
repeats (SSRs) or short tandem repeats (STRs) because they 
consist of a core motif generally from one to six base pairs 
(bp) (Zane et al. 2002) repeated consecutively in tandem 
arrays (Table 2). They are ubiquitous across eukaryotic 
genomes (Jarne and Lagoda 1996) to include nuclear introns, 
exons, and promoters (Reviewed in Goldstein and Pollock 
1997; Proven et al. 2001; Legendre et al. 2009), non-
recombinant chloroplast (Edh et al. 2007; McGrath et al. 
2007) and mitochondrial (Estoup et al. 1993; Sia et al. 
2000; Rajendrakumar et al. 2008) genomes. Other than 
being abundant, microsatellites are locus-specific, codomi-
nant, inherited in a Mendelian fashion, hypervariable length 
polymorphism (Ellegren 2004; Grasela and McIntosh 2005; 
Chambers et al. 2007), which can be observed under elec-
trophoresis as a mobility differential (Schlipalius et al. 
2001). 

Due to high mutation rates which are variable from 
repeat to repeat motif, ranging from 10- to 10,000-fold (10-3 
and 10-6 per cellular generation), they are generally higher 
than those of non-repetitive regions (Verstrepen et al. 2005). 
These characteristics make them good markers for studying 
the population structure of agronomically important crop 
species (Decroocq et al. 2003; Wang et al. 2006; Barkley et 
al. 2007;Wang et al. 2007; Weng et al. 2007; Barkely et al. 
2009; Wang et al. 2009a), potential feedstock species (Wang 
et al. 2009b), and insects which impact agricultural resour-
ces (Kim and Sappington 2005b; Miao et al. 2005) and 
disease transmission (Oliveira et al. 1998; Rongnoparut et 
al. 1999; Archak et al. 2006; Pizarro et al. 2008). 

The exact cause of microsatellite instability continues to 
be studied, but has yet to be verified and appears to be 
length-limited (Calabrese et al. 2001; Lia and Sun 2003). 
The elevated mutation rate (Bagshaw et al. 2008) of repeat 
motifs contributes to the high length polymorphism (Cala-
brese et al. 2001), as well as, to the variation across geno-
mic locations in eukaryotes. Microsatellite mutability has 
been attributed to stepwise mutations (Legendre et al. 2009) 
resulting from DNA polymerase slippage during replication 
and repair (Tautz and Schlötterer 1994; Lia and Sun 2003). 
This causes the newly created DNA strand to contain an ex-
panded or contracted section of the repeat array (Kruglyak 
et al. 1998). Unequal crossing over during meiotic recom-
bination has also been attributed to expansion and contrac-
tion of repeat motifs (Ellegren 2004; Bhargava and Fuentes 
2009), and, therefore, also contributes to taxa diversity. 

Microsatellites are found in coding and noncoding 
regions of eukaryotic genomes; although, they appear more 

abundantly in noncoding regions (Hancock 1995; Metzgar 
et al. 2000; Parida et al. 2009). They are particularly high in 
areas of eukaryote genomes that serve to maintain and cre-
ate the centromeric, telomeric, and subtelomeric chromo-
some regions, the heterochromatin (Palomeque and Lorite 
2008). Although functional roles of microsatellites in these 
areas continue to be studied, they may have a role in seg-
regation of chromosomes (Palomeque and Lorite 2008) and 
recombination (Petes 2001). The nature of microsatellite 
tandem array structure makes them prone to insertions or 
deletions (indels). These indels result in frameshifts, which 
could affect gene expression and phenotypes (Caburet et al. 
2005; Stranger et al. 2007) in coding and promoter regions 
of importance, which ultimately may influence adaptation 
and evolution (Moxon and Wills 1999; Li et al. 2004). A 
microsatellite length polymorphism in a gene sequence 
would frequently affect gene expression through effects on 
transcription (Albanése et al. 2001; Iglesias et al. 2004). 
For example, single amino acid repeat length polymor-
phisms or homopolymeric runs, e.g. polyglutamine (en-
coded as CAG repeat), have been shown to affect protein-
protein interactions (Gerber et al. 1994; Perutz et al. 1994) 
with transcription factors (Dechering et al. 1998; Huntley 
and Golding 2006). It has also been suggested that micro-
satellites in coding regions foster rapid genetic responses to 
environmental pressures that result in phenotypic adapta-
tions and evolution (Rando and Verstrepen 2007). Changes 
in repeat length within genes are also linked to many neu-
rological, neurodegenerative, and neuromuscular diseases in 
humans (Pearson et al. 2005). 

Repetitive motifs do not appear to occur by chance (Li 
et al. 2004; Bagshaw et al. 2008). Thus, these tandemly 
repeated monomeric units may have a role in gene regula-
tion (Contente et al. 2002; Bagshaw 2008) and meiotic 
recombination (Schultes and Szostak 1991; Kirkpatrick et 
al. 1999; Benet et al. 2000). Cardle et al. (2000) also found 
that the frequency of microsatellites in plant genomes 
varied as it did for insects (Archak et al. 2007). Microsatel-
lites seem to be no more polymorphic when located near 
regions with high levels of recombination known as meiotic 
hot spots (Gerton et al. 2000; Petes 2001, a review) than 
when located in regions with low levels of recombination 
known as meiotic cold spots (Richard and Dujon 2006). 
Motif may, however, be significant. A recent study reported 
that recombination rates increased when motifs consisted of 
50% or more of A or T, e.g. AG, TC, CA, TG; but, de-
creased when motifs consisted of only A and T or G and C, 
e.g. AT, TA, GC or CG (Guo et al. 2009). Thus, these hyper-
variable repeats seem non-randomly distributed (Zhang et 
al. 2004) and particularly significant in light of the most 
common repeats in insects and plants. 

Microsatellites are abundant in most plant and insect 
genomes (Thorén et al. 1995; Varshney et al. 2005; Palo-
meque and Lorite 2008; Pannebakker et al. 2010) as well as 
transferable cross-species (Smith et al. 2005; Ellis and 
Burke 2007; Augustinos et al. 2008) simple by lowering 
primer annealing temperatures in a PCR protocol (Barbará 
et al. 2007). This transferability, however, is disparately ap-
plicable in plants and insects and apparently dependent on 
genome size (Garner 2002). Barbará et al (2007) expanded 
earlier studies (Primmer et al. 1996; Rosetto 2001; Primmer 
et al. 2005) by gathering evidence of cross-species micro-
satellite transfer from the literature and determined that 
cross-species transfer does have some limitations. Their 
data showed that eudicot cross-species transfer was more 
likely than monocot cross-species transfer; and, vertebrate 
taxa were 63% more likely to have microsatellite cross-spe-
cies transfer than invertebrate taxa (311 vertebrates: 114 in-
vertebrates). Microsatellite cross-species transferability, 
although disproportionately allocated, is still a significant 
technology. It can be used to illuminate the processes of 
population stratification leading to speciation as well as 
study the interactions between and among populations 
(Noor and Feder 2006) across environments. 

Genes coding for proteins are transcribed as mature 

Table 2 Selected reviews on microsatellite topics. 
Review focus References 
Microsatellites  

Biotechnology Wang et al. 2009 
Mutation process Goldstein and Pollock 1997 
EST databases Jongeneel 2000 
Satellite DNA in insects Palomeque and Lorite 2001 
Null alleles Dakin and Avise 2004 
Meiotic recombination Petes 2001 
Strategies for isolation Zane et al. 2002 
Population differentiation Balloux et al.  2002 
Distribution, function, mutational 
mechanisms Li et al. 2002 
Evolution Ellegren 2004 
EST-SSRs Ellis and Burke 2007 
Features and properties Mittal and Dubey 2009 

In silico analyses  
Software Labate 2000 
Computer programs Excorrier and Heckel 2002 
Bioinofrmatics software Gilbert 2004 
From in vivo to in silico Di Ventura et al. 2006 
Mining for microsatellites Sharma et al. 2007 
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mRNA or the transcriptome, which represent a small com-
ponent of a taxon's genome (Jongeneel 2000, a review). 
Through reverse transcriptase (RT) technology, these coding 
regions are turned into a complementary DNA (cDNA) lib-
rary. Single unverified regions called expressed sequence 
tag (EST) sequences are generally obtained from the 5' and 
3' ends of each cloned cDNA. Since EST-derived micro-
satellites originated from transcribed regions of the genome 
with greater evolutionary continuity, it was not surprising 
that they and their microsatellites were conserved and, 
therefore, transferable across and between taxa (Bouck and 
Vision 2007). Even though studies have shown EST-derived 
microsatellite transferability limited beyond genus (Pashley 
et al. 2006), as 'single-pass' cDNA sequence databases have 
grown so concordantly have EST databases such as the 
National Center for Biotechnology Information (NCBI) 
EST database (dbEST; Boguski et al. 1993) and other EST 
databases (Pashley et al. 2006). This means that EST data-
bases continues to be a resource from which high quality 
and transferable microsatellites can be mined and developed 
for many species of interest (Jongeneel 2000, a review; 
Palomeque and Lorite 2008). 

Intergenic regions of arthropods and vascular plants 
appear to have an excess of AAC and AAG trinucleotide 
repeats when compared to introns of the same taxon (Tóth 
et al. 2000). Although AC/TG has been reported for man-
grove species (Maguire et al. 2000), the most common 
overall plant motif was AA/TT, followed by AT/TA and 
CT/GA, respectively (Tóth et al. 2000). A database search 
indicates that these three motifs together composed approxi-
mately 75% of all microsatellites with a length of six or 
more repeats (Lagercrantz et al. 1993). AT/TA is generally 
the most common (Marriage et al. 2009), especially with a 
length of 20 or more bp and AAG/CTT was the most abun-
dant trinucleotide repeats with a length of more than six 
repeats (Lagercrantz et al. 1993; Cardle et al. 2000). Cardle 
et al. (2000) found that in plant genomic DNA A/T repeats 
comprised 32% of repeats, AT/TA 16%, AAG/TTC 14% 
and AG/TC 10%. When EST databases were mined, Cardle 
et al. (2000) found that of all microsatellites, AAG/TTC 
was the most common plant repeat, ATC/TAG was the next 
trinucleotide motif followed by AG/TC and A/T at 29, 17, 
20 and 10%, respectively. Thus, when genomic databases 
are mined AT/TA is the most common plant motif, but when 
EST plant databases are mined the AG/TC motif is more 
frequent than the AT/TA motif (Zhang et al. 2004; Marriage 
et al. 2009). 

The most abundant trinucleotide motif in legumes, 
wheat, and other crop species was TAA/ATT followed by 
GAA/CTT, which was consistent with previous studies 
(Lagercrantz et al. 1993; Cardle et al. 2000). Mining EST 
databases recovered TC/AG as being the most prevalent di-
nucleotide in wheat, rice, maize, and soybean. Considering 
that the source was limited to coding regions, this is likely a 
biased sample. The dinucleotide repeats in the mitochon-
drial genome of rice, however, was made up of about 48% 
AG/CT repeats (Rajendrakumar et al. 2008). Like plants, 
insects are AT rich (Archak et al. 2006; Palomeque and 
Lorite 2008, a review). AT/TA is a prevalent dinucleotide in 
arthropods generally with AGC, AAC, AAT being the domi-
nant trinucleotides, respectively (Zane et al. 2002, a review). 
In arthropods generally, dinucleotide repeats are predomi-
nant in introns and intergenic regions. AG repeats were 
found mostly in intergenic regions and AT repeats in introns. 
GT/CA repeats appear scarce in both plants and insects; 
whereas, this motif comprises 20% of simple repeats in 
humans (Lagercrantz et al. 1993). 

Because microsatellites are codominant, they can distin-
guish between heterozygotes and homozygotes in popula-
tions. This is singularly important because individual pro-
geny and their population genetic structure can be ef-
fectively studied using microsatellite markers. Gene flow, 
e.g. alleles exchanged between or among populations across 
an adaptive landscape (Wright 1932), is dependent on the 
variables of ecology and biological history to include re-

source exploitation and mating system (Balloux and Lugon-
Moulin 2002; Lourmas et al. 2007). Gene flow is also influ-
enced by selection-dependent genetic structure due to epi-
genetic or “self-guiding” mechanisms which manipulate 
phenotypic variability in response to changing selective 
pressures (Rando and Verstrepen 2007). Spatial and tempo-
ral distributions within populations can be affected by re-
ducing gene flow. They could deviate from Hardy-Weinberg 
proportions because subpopulations may vary in allele fre-
quencies (Yang 1998). This phenomenon can be indirectly 
measured with large microsatellite datasets generated by 
present technology in conjunction with calculation of F-sta-
tistics (fixation indices) from the microsatellite data. [Fixa-
tion indices are measures of heterozygosity in individuals 
(HI), subpopulations (HS) and total population (HT) relative 
to Hardy-Weinberg expectations and can range in value 
from 0 (no differentiation) to 1 (complete differentiation): 
FST = (HT –HS)/HT – measure of genetic differentiation 
among subpopulations; FIS = (HS-HI)/HS - measure of gene-
tic inbreeding within a subpopulation; FIT = (HT –HI)/HT – 
measure of heterozygosity of individuals relative to the total 
population ]. High gene flow between populations increases 
genetic variability and effective population size, but de-
creases local adaptation due to population panmixis, i.e. if 
the migration rate (m) is more than the selection coefficient 
(s), then selection will have a negligible effect on allele fre-
quency divergence among populations (Stofer 1999). This 
in turn decreases the effects of genetic drift and increases 
the phenotypes for selection (Barton and Hewitt 1985; Bal-
loux and Lugon-Moulin 2002). 

Insect herbivores and the plants on which they feed dis-
play a wealth of diversity in morphology, adaptation, ecol-
ogy, and genetics due to millions of years of divergence and 
diversification. Thus, as plant populations continue to diver-
sify and evolve from selection pressures so too will herbi-
vorous insect populations (Futuyma and Agrawal 2009). 
Microsatellites can illuminate the population fine genetic 
structure (Schrey et al. 2008; Yao and Akimoto 2009) and 
gene flow (Chaix et al. 2003), which affects the heterozygo-
sity, and thereby, the adaptive potential of these populations 
through genome evolution (Tóth et al. 2000). This is why 
they have been used to study the genetic structure and 
diversity of agriculturally important insect (Kim et al. 2008) 
and plant (Olsen and Schaal 2001; Li et al. 2003; Lia et al. 
2007; Arakaki et al. 2010) populations in order to illumi-
nate possible adaptive responses (Rudmann-Maurer et al. 
2007) vital in this time of climate change (Hochkirch and 
Damerau 2009; Horning and Cronn 2009). 

Microsatellites have also been used in plant and insect 
population studies to understand biological phenomena 
which serve to genetically structure plants (Zhang et al. 
2010) and insect populations (Carletto et al. 2009). They 
have been used to identify genes under selective pressure as 
a result of crop domestication (Olsen and Schaal 2001; 
Vigouroux et al. 2002, 2003), to develop linkage maps, par-
ticularly in search of resistance genes (Akkaya et al. 1995; 
Cregan et al. 1999; Miao et al. 2005), to study insects 
which affect human health (Norris et al. 2001; Bataille et al. 
2009), to develop insect pest control strategies and for 
studying Mendelian inheritance (Schipalius et al. 2001; 
Miao et al. 2005). They are also uniquely suited to study 
natural and anthropogenic determinants (Rudman-Maurer et 
al. 2007) of population genetic structure (Ballous and 
Lugon-Moulin 2002; Van’t Hof et al. 2007; Wang et al. 
2009a). 

Although microsatellite development for certain insect 
genera, Lepidoptera (Nève and Meglécz 2000; Zhang et al. 
2004) and Aedes (Fagerberg et al. 2001), has proven dif-
ficult because of the nature of the repeat motifs, these 
markers continue to be the marker of choice (Avise and Ball 
1990; Goldstein and Pollock 1997; Fisher et al. 2000; 
Richard and Thorpe 2001; Symonds and Lloyd 2003; 
Holzer et al. 2006; Weng et al. 2007; Ross and Shoemaker 
2008) for insects (Harr et al. 2000; Temu et al. 2004; Ross 
et al. 2008), "the most diverse group of organisms on Earth" 
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(Carletto et al. 2009), and plants on which all animal life 
depends (Powell et al. 1996; Oliveira et al. 1998; Roder et 
al. 1998; Rongnoparut et al. 1999; Temnykh et al. 2001; 
Chaix et al. 2003; Ritschel et al. 2004; Li et al. 2005; Miao 
et al. 2005; Varshney et al. 2005; You et al. 2005; Debout et 
al. 2007; Edh et al. 2007; Zheng et al. 2007; Lia et al. 2007; 
Wang et al. 2007; Exeler et al. 2008; Kobayashi 2008; 
Pérez de Rosas et al. 2008; Pizarro et al. 2008; Ross and 
Shoemaker 2008; Schrey et al. 2008; Takahashi et al. 2008; 
Carletto et al. 2009; Ijaz and Khan 2009; Yao and Akimoto 
2009). 

Microsatellites are often transferable, e.g. can be ampli-
fied across taxa (Barbará et al. 2007; Wang et al. 2009a), 
especially in insect (Huttunen and Schotterer 2002; Kim 
and Sappington 2005a; Smith et al. 2005) and plant (Ros-
setto 2001; Varshney et al. 2005; Wang et al. 2005; Barkley 
et al. 2007; Wang et al. 2007; Gong et al. 2008; Tang et al. 
2010) species. Thus “in silico mining” (reviewed in Shar-
ma et al. 2007), of genome-sequence or microsatellite data-
bases (Aishwarya and Sharma 2008) is cost effective in 
terms of time, money, and ease of application. Bioinfor-
matics provides an efficient way to facilitate microsatellite 
marker discovery which, because of the marker’s inherent 
characteristics (Wang et al. 2009a), can be applied to popu-
lation genetic studies, i.e. research on genetic diversity, 
gene flow (Noor and Feder 2006; Barbará et al. 2007) phy-
logenetics (Arévalo et al. 2004; Ochieng et al. 2007; Yao et 
al. 2008), and population structure (Barkley et al. 2006) 
among closely related, sympatric, or fragmented popula-
tions (Nishimura et al. 2005; Barbará et al. 2007). 
 
SEQUENCE DATABASES: A VALUABLE 
RESOURCE FOR MICROSATELLITE IN SILICO 
MINING 
 
Insect and plant biologist are increasingly realizing that suc-
cessful research is inextricably linked to the web and in 
silico analyses (Jenkins et al. 2007, 2009). Scientists have 
witnessed an explosion of DNA sequence data during the 
last decade (Refer to Higgs and Attwood 2007, pp 81-88), 
which has facilitated the development of free software for 
in silico analysis of high through-put microsatellite data. A 
plethora of internet databases, including genome sequences, 
are now regularly mined for microsatellite markers using 
robust, user-friendly, open access programs and databases 
(Prasad et al. 2005; Blenda et al. 2006; Archak et al. 2007; 
Yasodha et al. 2008) which are experiencing explosive 
growth (Thiel et al. 2003; Aishwarya and Sharma 2007; 
Wang et al. 2009a). Genomic and EST databases (Varshney 
et al. 2002; Crane 2007) with their enormous amounts of 
sequence information from which SSRs can be mined 
(Sreenu et al. 2003; Prasad et al. 2005; Aishwarya et al. 
2007; Kim et al. 2008; McWilliam et al. 2009) coupled 
with computer programs capable of analyzing large repeti-
tive datasets continue to sustain the popularity of this highly 
informative and versatile codominant marker (Schlötterer 
1998) by "bridging the gap between a large body of expe-
rimental data and useful mathematical models" (Ventura et 
al. 2006). Free web-based computational or bioinformatic 
tools for in silico analyses are also expanding (Excoffier 
and Heckel 2006). These resources enable the researcher to 
design, identify, generate, or analyze large microsatellite 
datasets (Aishwarya et al. 2007) for spatial and temporal in-
sights into population structure and genetic diversity within 
the framework of population genetic and evolutionary the-
ory (Gilbert 2004; Johnson and Haydon 2007a, 2007b). 

The International Nucleotide Sequence Database Col-
laboration (INSDC) (Table 1, INSDC) includes the three 
primary sequence databases in common use today which 
partner so closely that all new and updated database entries 
are exchanged among the groups on a daily basis (Higgs 
and Attwood 2007, p. 82) (Fig. 1). These INSDC collabora-
tive databases include the DNA data Bank of Japan (DDBJ), 
the European Nucleotide Sequence Database (EMBL), and 
GenBank in the United States (Fig. 1). 

DDBJ (Table 1, DDBJ); Sugawara et al. 2008) was es-
tablished to meet the needs of Japanese researchers. DDBJ 
began collaborating with GenBank and EMBL in 1982 
(Stoesser et al. 1998, 2003). It operates from the Center for 
Information Biology and DNA Data Bank of Japan (CIB-
DDBJ) in Mishima, Japan, which began operations in 1995 
(Table 1, CIB-DDBJ). DDBJ is the only nucleotide se-
quence database for Asia that is certified to collect DNA 
sequence and then issue accession numbers acceptable to 
INSDC and the international community (Table 1, DDBJ 
overview). 

EMBL (Table 1, EMBL) is an inter-governmental orga-
nization with 20 member states and one associate state. 
There are five laboratories. The first and main laboratory 
was initiated in 1978 and is located in Heidelberg, Germany. 
The other four laboratories are in Hinxton, UK (the Euro-
pean Bioinformatics Institute, EBI), Grenoble, France, 
Hamburg, Germany, and Monterotondo, Italy. The overall 
purpose of EMBL is “to promote molecular biology across 
Europe and to provide an attractive alternative to the United 
States as a workplace for Europe's leading young molecular 
biologists”. It is part of the European Nucleotide Archive 
(ENA) (Cochrane et al. 2008), which was established in 
1980 and is maintained by the European Bioinformatics 
Institute (EMI) (Stoesser et al. 1998, 2003). The umbrella 
collaborative group, INSDC, is governed by an advisory 
committee of nine members, three from the US, three from 
Europe and three from Japan and constitutes the major 
repository for sequences generated in laboratories across the 
world (Fig. 1). 

Historically, GenBank began with Walter Goad and 
others of the Theoretical Biology and Biophysics Group at 
Los Alamos National Laboratory in Los Alamos, NM, USA. 
They established the Los Alamos Sequence Database in 
1979; and, in 1982 this database morphed into GenBank, 
two years after the EMBL Data Library was established 
(Stoesser et al. 2003). In 1982, GenBank, DDBL, and 
EMBL (Table 1) began to share data and have been doing 
so efficiently and consistently for 25 years. This overlap 
provides all sequence information to users in a single source 
greatly facilitating the ease to mine data. Funding for 
GenBank comes from the National Institutes of Health 
(NIH), the National Science Foundation (NSF), the Depart-
ment of Energy (DOE), and the Department of Defense 
(DOD) (Table 1, GenBank funding). GenBank is accessible 
through the National Center for Biotechnology Information 
(NCBI), National Library of Medicine (NLM), National 
Institutes of Health (NIH), Bethesda, Maryland 20894, USA 
(Table 1, NCBI)). End-users of GenBank can easily search 
and retrieve data from the multiple databases including 
microsatellite and nucleotide sequence databases with 
NCBI's text-based Entrez system (Table 1, NCBI text-based 
Entrez). By the end of 1983 there were more than 2,000 

Fig. 1 Cartoon of INSCS organization showing the collaboration 
among DDBJ, EMBL and GenBank databases (refer to text for 
explanation). 
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sequences in GenBank. It presently has over 61 million se-
quences representing over 100,000 unique taxa. GenBank 
has doubled in size approximately every 18 months (Ben-
son et al. 2007) a phenomenon largely due to direct submis-
sions by individual scientist as well as from sequencing pro-
ject collaborations such as the International Anopheles Gen-
ome Project, the Mouse Genome Sequencing Consortium 
(MGSC) (Stoesser et al. 2003) the Soybean Genome Data-
base (SoyGD) (Archak et al. 2007) among others. 

Besides the INSDC databases, which continue to grow 
exponentially (Stoesser et al. 2003), open access (OA) jour-
nals published online are excellent sources for database 
information. One of the most accessible and up-to-date OA 
journals is Nucleic Acids Research (NAR). It has published 
an Annual Database Issue since 1993 (Galperin and Coch-
rane 2009). The objective of the NAR Annual Database 
Issue is to keep researchers abreast of new and enduring 
database collections. The 2010 issue and its accompanying 
complete database list and summaries are available online 
at the Nucleic Acids Research web site (Table 1, Nucleic 
Acids Research) and at the 2010 NAR Database Summary 
Papers Category List URL (Table 1, NAR Database Sum-
mary Papers Category List URL), which includes immedi-
ate access to GenBank, DDBJ, and EMBL. When NAR’s 
annual Database issue was first published in 1993 it inclu-
ded 24 database papers (Galperin and Cochrane 2009). The 
2009 NAR Database issue had 179 papers which described 
95 new databases. The NAR online Molecular Biology 
Database Collection now has 1,170 publically available 
databases representing international contributions (Galperin 
and Cochrane 2009). All sequences are deposited into 
GenBank for all to access and mine. 

The international scientific community has cooperated 
on open access database creation, maintenance, and usage 
to the extent that these database collections are experien-
cing exorbitant growth. Due to the growth in sequences 
deposited to the three major databases (GenBank, EMBL, 
and DDBJ) there was a need in the community to develop 
taxa specific databases to manage sequence information. 
Some of these new and expanding databases include: the 
internationally supported microsatellite databases such as 
the Small Genomes Microsatellite Database (includes orga-
nelles) (Table 1, Small Genomes Microsatellite Database)), 
insects e.g., insect database (InSatDb) (Archak et al. 2006) 
(Table 1, InSatDb) and silkmoth microsatellite database 
(SilkSatDb) (Table 1, SilkSatDb), and plants e.g., wheat 
(WHC) (Table 1, WHC), Cotton (CMD) (Table 1, CMD), 
the International Grape Genome Program (IGGP) (Table 1, 
IGGP) formed by the genetics international research com-
munity with projects funded by the National Science Foun-
dation (NSF) in the US and listed among other Vitis spp. 
databases on the Paul Evans Library of Fruit Science web-
site, which is maintained by the Missouri State University 

Libraries (Table 1, Paul Evans Library of Fruit Science). 
This is not an exhaustive list of all the taxa specific data-
bases that exist on the web, but a sample of some specific to 
plant or insect species. 

Insights into population structure are often gleaned from 
organelle data. Thus, organelle databases can also be mined 
for possible microsatellites or SSRs. An example of such a 
database is GOBASE (Table 1, GOBASE) (O’Brien et al. 
2006), which is now in its 21st release (O’Brien et al. 2009). 
It contains all published mitochondrion-encoded sequences 
and chloroplast-encoded sequences from a wide collection 
of eukaryote taxa. GOBASE has over 910,000 mitochon-
drial sequences and over 250,000 chloroplast sequences 
representing 737,000 and 174,000 genes, respectively 
(O'Brien et al. 2009). These data were culled mostly from 
GenBank releases. Furthermore, GOBASE has recently 
added three reference bacteria genomes (O’Brien et al. 
2006) from which SSRs can be mined: the gamma-proteo-
bacterium, Escherichia coli K12, the alpha-proteobacterium, 
Rickettsia prowazekii and Nostoc sp. A truncated gamma-
proteobacterium is part and parcel of insect mutualistic 
symbioses widely found among hymenopteran, hemipteran 
and other insect orders (O’Neill et al. 1992; Thao et al. 
2000; reviewed in Gil Latorre and Moya 2004; Moran et al. 
2005; Kikuchi et al. 2007; Allen et al. 2009). Rickettsia 
prowazekii was likely an ancestor of mitochondria and Nos-
toc sp. appears to be the ancestor of chloroplasts. Presently 
GOBASE and scientists at NCBI are making the GOBASE 
content an "auxiliary to GenBank" (O’Brien et al. 2009) 
and, therefore, available to INSDC collaborators to search 
for SSRs. 

The first human nuclear genome was sequenced in 2003 
after 12 years of work and cost over $3 billion. Today the 
cost to sequence an individual’s nuclear genome is ap-
proaching $1000.00, according to an article posted by 
Allain Andry (Table 1, Allain Andry). Because the price of 
whole genome sequencing continues to become cheaper 
with next generation sequencing technology, genetic tests 
for specific genes linked to cancer, other diseases and life 
issues are being developed. We hear of a new era of “per-
sonalized medicine” in which drugs and therapies will be 
prescribed / targeted based on an individual patient’s speci-
fic genes or whole genome. 

Because the price of whole genome sequencing con-
tinues to become cheaper with next generation sequencing 
technology, the explosion of whole genomic data will con-
tinue to rise which will aid in the ease of development of 
microsatellites for plants and insects. Many of the major 
crops or model crop species such as Arabidopsis have their 
whole genome publicly available to the entire scientific 
community. Access to whole genome data is advantageous 
to researchers working with these taxa in that in silico 
programs can be easily employed to mine sequence infor-

Table 3 A list of frequently used software programs which can be utilized for microsatellite identification from sequence data along with their respective 
website. 
Name Website Reference 
CID http://www.shrimp.ufscar.br/cid/index.php Freitas et al. 2008 
Microsatellite Repeats Finder http://biophp.org/minitools/microsatellite_repeats_finder/ Benson 1999 
MISA http://pgrc.ipk-gatersleben.de/misa/  
MRepatt http://alggen.lsi.upc.es/cgi-bin/search/mrepatt/mrepatt.pl  
MSATCOMMANDER http://code.google.com/p/msatcommander/ Faircloth 2008 
Phobos http://www.ruhr-uni-bochum.de/spezzoo/cm/cm_phobos.htm Mayer 2006-2010 
Poly http://www.bioinformatics.org/poly/wiki/ Bizzaro and Marx 2003 
QDD http://gsite.univ-provence.fr/gsite/Local/egee/dir/meglecz/QDD.html Meglécz et al. 2010 
RepeatMasker http://www.repeatmasker.org Smit et al. 1996-2004 
Sputnik http://espressosoftware.com/sputnik/index.html  
SSR Finder http://www.maizemap.org/bioinformatics/SSRFINDER/SSR_Finder_Download.html  
SSRIT http://acorn.cshl.org/db/searches/ssrtool  
SSR Locator http://minerva.ufpel.edu.br/~lmaia.faem/ da Maia et al. 2008 
Tandem Repeats Finder http://tandem.bu.edu/trf/trf.html Benson 1999 
TROLL http://finder.sourceforge.net/ Castelo et al. 2002 
WebSat http://wsmartins.net/websat/ Martins et al. 2009 
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mation for various microsatellites motifs (Table 3) as well 
as be used for numerous other research applications. How-
ever, there are still many minor plant and insect species that 
have limited sequence or no sequence data available in pub-
licly available databases. These minor taxa may only have a 
few hundred deposited sequences or less, which makes 
mining sequence data for microsatellites impractical. This 
can be a serious limitation of working with minor taxa with 
three main ways to overcome this hurdle. The first method 
is to develop a microsatellite enriched library (Takundwa et 
al. 2010) for the taxa of interest and utilize the library to 
reveal microsatellite repeats. The second method, which 
relies on transportability between species, is to use micro-
satellites developed in closely related species (if available), 
on the species of interest (Wang et al. 2009a). The third 
method is to have the taxa of interest sequenced or wait 
until it is sequenced by other researchers and deposited into 
a public database. 

 
GENETIC SOFTWARE FOR IN SILICO ANALYSES 
 
According to a review by Zhang and Hewitt (2003), 
“microsatellite sequences are the most revealing DNA mar-
kers available so far for inferring population structure and 
dynamics.” This suggests that the field of population gene-
tics has benefited enormously from the synergy between 
population genetic theory and the development and applica-
tion of DNA multi-locus marker technology. The insect and 
plant scientist studying genetic structure must understand 
the genetics of the microsatellites they use, as well as, how 
to generate large datasets with the markers using the latest 
biotechnologies (Wang et al 2009a). Further, they must also 
know how to download and use free in silico software on 
the internet for analyzing microsatellites (Benson 1999) so 
that datasets can be collected and analyzed in a timely man-
ner (Kim et al. 2008; Rajendrakumar et al. 2008). 

The massive internet resources for microsatellite dis-
covery or data analyses has therefore become indispensable 
to the insect and plant biologist of the 21st century who 
desires to generate large datasets in order to perform phylo-

genetic analysis or evaluate historical and spatial population 
genetic structure from the stand point of its deviation from 
the Hardy-Weinberg equilibrium model. High throughput 
sequencing machines have made the generation of large 
microsatellite datasets routine (Wang et al. 2009a) and, 
therefore, insights into fine population structure accessible. 
Large, genome-based microsatellite datasets (Lovin et al. 
2009) can also be effectively collected and analyzed in a 
timely manner through in silico analyses using computer 
freeware (Table 4). Just as the number and content of 
online databases have exploded so have online open access 
to freely downloadable bioinformatics tools for mining and 
analyzing these datasets (reviewed in Labate 2000 and Ex-
coffier and Heckel 2006) (Tables 1, 3 and 4, Bioinformatics 
tools). 

Since large datasets can be analyzed in silico from plas-
tid and nuclear genomes in population-specific plant species, 
inter- and intraspecific genetic diversity as well as insect 
and other mediated seed and pollen gene flow for important 
agricultural crops, horticultural species and forage and turf 
grass species have been illuminated (Chaix et al. 2003; You 
et al. 2005; Edh et al. 2007; McGrath et al. 2007). Popu-
lation genetic theory and in silico analyses of microsatellite 
data from insect vectors of disease (Lovin et al. 2009) have 
revealed that gene flow in these insect populations has been 
more extensive than previously thought and may only be 
limited by geographic barriers. If microsatellites are 
uniquely suited to population genetics studies, and they ap-
pear to be, then in silico population estimates are uniquely 
suited to these large microsatellite datasets. 

The speed with which data generation and analysis can 
now be done also necessitates quicker communication of 
results to the scientific community. This need has given rise 
to open access journals such as the Public Library of Sci-
ences (PLOS) which, because of their fast turn-around from 
submission to publishing, are increasingly being supported 
by the scientific community (Gitschier 2009). Furthermore, 
there are now journals, such as In Silico Biology, dedicated 
to research articles on the latest in silico analyses, modeling, 
and simulations, which help scientists’ keep abreast of the 

Table 4 A list of some of the common programs for use in in silico analyses with microsatellite data. (This is not a comprehensive list of all programs 
available and all of their functions for analyses. Only functions relative to microsatellite analyses are listed in the table see associated websites to review 
full list of functions for each program.). Refer to Table 1, under Topic Bioinformatics, website for softlinks for a more exhaustive list. 
Program Free-

ware 
Reference Website Analyses 

Arelequin Yes Excoffier and 
Lischer 2010 

http://cmpg.unibe.ch/software/arlequin3
5/ 

AMOVA, F-statistics, Gene diversity, LD, Hardy Weinberg, 
allele frequencies, expected heterozygosity, population 
differentiation, Garza-Williamson index, Mantel test, genetic 
distance 

GENEPOP Yes Rousset 2008 http://genepop.curtin.edu.au/ Hardy Weinberg, Linkage Disequilibrium, F statistics, Nm, and 
gene diversity 

LAMARC Yes Kuhner 2006 http://evolution.genetics.washington.ed
u/lamarc/index.html 

Population size, population growth rate, Ne, recombination and 
migration rates 

Micro-Checker Yes  http://www.microchecker.hull.ac.uk/ Checks for null alleles and scoring errors in microsatellite data
Migrate-N Yes Beerli and 

Palczewski 2010 
http://popgen.sc.fsu.edu/Migrate/Migrat
e-n.html 

NE, migration rates between populations, Likelihood-ratio tests, 
Bayesian inference or Maximum Likelihood inference 

NTSysPC No  http://www.exetersoftware.com/cat/ntsy
spc/ntsyspc.html 

PCA, genetic distance, Neighbor-Joining, UPGMA 

PAUP No Swofford 1998 http://paup.csit.fsu.edu/ NJ, UPGMA tree construction, bootstrapping 
PHYLIP Yes Felsenstein 2005 http://evolution.genetics.washington.ed

u/phylip.html 
NJ, UPGMA tree construction, bootstrapping 

POPTREE2 Yes Takezaki et al. 2010 http://www.med.kagawa-
u.ac.jp/~genomelb/takezaki/poptree2/in
dex.html 

Calculates genetic distances, heterozygosity, number of alleles, 
and Gst, NJ or UPGMA tree constructing, bootstrapping 

Power Marker Yes Liu and Muse 2005 http://statgen.ncsu.edu/powermarker/in
dex.html 

Calculates heterozygosity, PIC, Hardy-Weinberg equilibrium, 
gene diversity, linkage disequilibrium, F statistics, 
bootstrapping, NJ and UPGMA tress 

RSTCALC Yes Goodman 1997 http://www.biology.ed.ac.uk/research/in
stitutes/evolution/software/rst/rst.html

Rst-genetic differentiation, Nm-number of migrants, genetic 
distance calculation, bootstrapping 

STRUCTURE Yes Pritchard et al. 
2000 

http://pritch.bsd.uchicago.edu/structure.
html 

Infers population structure, assigns individuals to populations 
using a Bayesian approach, estimates allele frequency in each 
population 
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latest in data analyses. Population genetic analyses benefits 
from the integration of large, biologically based, empirical 
datasets with theoretical population models through this in 
silico or computer science phenomenon (Ventura et al. 
2006) for two reasons. First, larger datasets provide more 
insights into the selection pressures and stochastic dynamics 
within and between populations. Secondly, population 
genetics is highly theoretical and model driven. Thus, in 
silico analyses provides a computer platform for the integ-
ration of knowledge building from empirically generated 
observations and theoretical population genetics concepts 
(Ventura et al. 2006). 

 
Genetic structure in silico analyses 
 
Populations of unknown genetic structure, e.g. cryptically 
stratified or structured due to differences in ancestry are 
challenging to elucidate for most genetic studies (Marchini 
et al. 2004; Alexander et al. 2009). The inherent difficulty 
lies in developing adequate mathematical models that can 
sufficiently replicate the true complexity of nature. Many in 
silco methods designed to identify how populations are 
genetically structured and infer gene flow by estimating the 
ancestry of individuals within subpopulations are now being 
used. Two basic approaches exist for evaluating population 
structure, global ancestry estimates which is model based 
and algorithmic ancestry estimates which are algorithmic 
based (Alexander et al. 2009). In silico stratification ana-
lyses of multilocus genotypes sampled from a population 
with unknown structure are capable of estimating not only 
the ancestry of individuals, but also identify the subpopu-
lations to which they belong. While not advocating for one 
program over another we will focus on STRUCTURE (Prit-
chard et al. 2000) since, with over 4,800 citations (ISI Web 
of Knowledge) for its first version (Pritchard et al. 2000), it 
is the most widely used clustering software at the time of 
this writing (Kaeuffer et al. 2007). 

STRUCTURE (Pritchard et al. 2000) identifies the pre-
sence of subpopulations by using a model-based clustering 
algorithm (Bayesian inference) on multilocus genotypes. It 
generates clusters or groups based on transient Hardy-Wein-
berg disequilibrium (HWD) and linkage disequilibrium 
(LD) resulting from admixture between populations (Kaeuf-
fer et al. 2007). Therefore, it assumes that loci fit Hardy-
Weinberg equilibrium and linkage equilibrium within a sub-
population. The enhanced version of STRUCTURE 
(STRUCTURE 2.1; Falush et al. 2003) improved clustering 
results by combining the admixture model (Pritchard and 
Wen 2004) with user defined map distances between mar-
kers (Kaeuffer et al. 2007). Overestimates of clusters, how-
ever, can occur due to ‘strong’ linkage disequilibrium or 
deviations from Hardy-Weinberg equilibrium (Falush et al. 
2003) and using different combinations of loci can affect 
the number of inferred subpopulations (Kaeuffer et al. 
2007). 

STRUCTURE analysis can reveal the presence (or 
absence) of population structure, examine hybrids, identify 
migrants, and evaluate admixed individuals based on allele 
frequencies all of which can help elucidate population vari-
ation and ancestry in plants and insects. STRUCTURE 
probabilistically assigns individuals to populations or mul-
tiple populations if their genotype indicates admixture (Prit-
chard et al. 2000). One of the main advantages of this prog-
ram is that it does not assume a specific mutation model, 
and thus, can be utilized for most linked and unlinked gene-
tic markers including microsatellites. Further, STRUC-
TURE can identify subpopulations (or clusters) with or 
without predetermined user-defined population information 
(Fig. 2). This program does allow for missing data points 
which can often occur when collecting large microsatellite 
data sets (large sets of markers and/or taxa) or when em-
ploying microsatellite markers on divergent genera/species. 

The program STRUCTURE has been extensively used 
since its inception to evaluate population structure of plants. 
A few examples of its use in plants are discussed. STRUC-

TURE analysis was employed in a large study of 260 maize 
inbred lines which were assayed for variation from 94 
microsatellite loci. This analysis identified five populations 
that corresponded to the major breeding groups and identi-
fied some lines displaying mixed origin (Liu et al. 2003). In 
a separate maize study, STRUCTURE analysis was em-
ployed to evaluate gene flow and genetic contribution from 
teosinte to Mexican maize. This report demonstrated that 
Mexican maize at higher elevations had a modest contribu-
tion of gene flow from teosinte; whereas, maize in lower 
elevations had less of a genetic contribution from teosinte 
(Matsuoka et al. 2002). Kwak and Gepts (2009) used 
microsatellite loci to examine the major gene pools of com-
mon bean (Phaseolus vulgaris). The STRUCTURE results 
demonstrated that the Mesoamerican gene pool had higher 
proportions of non-hybrid accessions compared to the 
Andean gene pool. Furthermore, the population structure 
was consistent with ecogeographic racial structure within 
gene pools and a subdivision between Mesoamerican and 
Andean gene pools (Kwak and Gepts 2009). Population 
structure was also used to evaluate the US sorghum germ-
plasm collection. Population analysis identified four sub-
groups from the genotypes of 96 accessions and partitions 
among groups were well correlated with geographic loca-
tions that these accessions either were collected or ori-
ginated (Wang et al. 2009b). 

In Barkley et al. (2006), STRUCTURE analysis eluci-
dated hybrid origin in multiple citrus accessions which had 
limited passport data. Taxonomy of Citrus has long been 
debated since many cultivated species are derived from 
natural hybridization of the ancestral forms. This analysis 
identified five clusters in a population of 370 citrus acces-
sions. The five populations represented all of the ancestral 
species and citrus relatives, while the remaining species 
were hybrids among the naturally occurring forms (Fig. 2). 
Furthermore, this study demonstrated that some accessions 
previously believed to be non-hybrids were actually hybrids 
or hybrid derivatives. It also confirmed the ancestry of 
known hybrids. In addition, the structure data provided an 
alternative approach to evaluate varieties with questionable 
passport data, which ultimately led to better understanding 
of these accessions origin and improved management of the 
germplasm (Barkley et al. 2006). 

As population genetics continues to evolve into a “data-
driven discipline” (Pool et al. 2010) genome-wide multi-
locus datasets continue to push the analytical limits of in 
silico analyses (Price et al. 2006; Davidson et al. 2009; Pool 
et al. 2010). STRUCTURE is time consuming on large 
datasets since the user has to specify different values of K 
(number of populations) and allow the program to run until 
the data has converged. EIGENSTRAT (Price et al. 2006), 
and other similar methodologies (Zhang et al. 2009), em-
ploys an algorithm-based ancestry estimates which uses 
principal component analysis (PCA) to model population 
structure or stratification. Cited 666 times (ISI Web of 
Knowledge) it is a fast and efficient way to analyze geno-
types on a genome-wide scale (Price et al. 2006). Because 
PCA is less parametric than model based ancestry estimates, 
it can provide low-dimensional projections of the data that 
describe the aggregate variation among genotypes (Alexan-
der et al. 2009). Furthermore, PCA is considerably faster on 
large scale data sets compared to model based ancestry esti-
mates, it provides an initial test for the presence of popu-
lation structure in a data set, and PCA does not purport to 
force individuals into distinct subpopulations where strati-
fication may or may not actually exist (Patterson et al. 
2006). An advantage PCA can have for a researcher study-
ing population stratification is that the results from algo-
rithm based analyses can provide a default for the number 
of clusters (K) to infer in the program STRUCTURE (Pat-
terson et al. 2006). This would reduce the total time re-
quired to run the program since the number of iterations to 
convergence in model based ancestry estimates increase as 
the number of subpopulations set by the user increases 
and/or the value of K chosen poorly supports the data (Ale- 
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Fig. 2 (A) Structure data from a population of 370 Citrus and two related genera showing individual gene history (Barkley et al. 2006). (B) Bar plot of the 
genetic composition of subterranean termite subpopulation inbred genotypes represented by five colors from a population representing a single introduc-
tion of 10 years longevity and generated by STRUCTURE 2.0 using the admixture model (Jenkins, unpublished data). 
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xander et al. 2009). Overall, if researchers employ model 
based and algorithm based ancestry estimates to a data set, 
population structure or the lack of population structure 
should be evident in either analyses (Patterson et al. 2006) 
and this overlap in results from analyzing data utilizing two 
distinct models leads to enhanced support of “true” stratifi-
cation in a data set. 

 
Phylogenetics: Genealogy and relationships in 
plants and insects 
 
Phylogenetics, which can be defined only in an evolu-
tionary context, as the relatedness of a species or genera 
relative to a common ancestor has been used in all branches 
of biology and several related fields. These diagrams (trees) 
illustrate genealogical descent and mutational change 
throughout time among lineages. Phylogenies display his-
torical relationships, not similarities; although, closely 
related taxa tend to be similar because of a recent shared 
common ancestor (Baum et al. 2005). Applications invol-
ving phylogenies include studies in eukaryotes and prokary-
otes alike from studying the relationships between insects 
and disease, investigating the origin of human populations, 
revealing insights of the origin of land plants, evaluating 
plant and animal interactions, identifying relationships bet-
ween pathogens, to determining if a dentist infected patients 
with HIV (Armbruster 1992; Leitner et al. 1996; Huelsen-
beck and Rannala 1997; Soltis and Soltis 2000; Bataille et 
al. 2009; Llewellyn et al. 2009) along with numerous other 
applications. Phylogenies also can be employed to address 
ecological issues such as evaluating biodiversity and con-
servation priorities given that close relatives of a species 
going extinct are likely to be a high risk for extinction 
(Mace et al. 2003). Generally speaking, phylogenetic re-
construction has been a dominant force in the last 25-30 
years of research that has made a huge impact in all facets 
of biology and related fields. A list of programs available 
for phylogenetic analysis of microsatellite data is included 
in Table 4 and more information can also be found in Table 
2 (phylogenetic analysis, evolution) and/or at the specific 
website for each respective program. It is beyond the scope 
of this review to detail steps for utilization of the various 
programs mentioned in the text; but, we aim to guide users 
to alternative programs for data analysis and demonstrate 
some of the potential uses in plants and insects). 

Even though phylogenetic inference is a fairly common 
practice, development of trees representing the relationships 
among animals, plants, fungi, protists, as well as the numer-
ous undescribed species are still poorly understood or en-
tirely unknown (Mayr 2001) since so many species still 
have limited genetic information collected. However, the 
explosion of genomic data in the past 15-20 years and iden-
tification of new species are helping to fill in these un-
known gaps. Reconstructing relationships relies on mathe-
matical methods to infer the past from features of contem-
porary species with the fossil record as support to these 
inferences (Delsuc et al. 2005). Molecular phylogenetics, 
most commonly used today, utilizes differences in mole-
cules, such as DNA or microsatellite markers, to supply 
information on the relationships among taxa and provides 
the basis for the majority of trees developed. Phylogenies 
can be created for either extant or extinct individuals as 
long as molecular data can be directly collected or indirectly 
obtained (i.e., GenBank) from the individuals being ana-
lyzed. Overall, one of the most important impacts of phylo-
genetics is the ability to clarify intra- and interspecific rela-
tionships among organisms and understand their evoluti-
onary history. 

Plants display a wealth of diversity in morphology, 
adaptation, ecology, and genetic composition, due to mil-
lions of years of divergence and diversification, which 
should be characterized to understand the mechanisms 
through which this diversity arises (Schaal et al. 1998). 
Microsatellite derived phylogenies have been extensively 
used to evaluate genetic diversity and inter- and intraspeci-

fic relationships in many plant and insect species. Phylo-
genetic relationships are determined based on a calculated 
genetic distance (sequence conservation or diversification) 
in their evolutionary history and reflect the relatedness of a 
group of individuals. Therefore, everything makes more 
sense in the light of a phylogeny (Soltis and Soltis 2000). 
This tool has been successful to help clarify relationships, 
distinguish individuals, reclassify samples, evaluate popula-
tion structure, examine the geographic distribution of a spe-
cies (phylogeography), and support or revise current taxo-
nomic classification. A few selected examples of phyloge-
nies for plants and insects in the current literature and their 
impact will be discussed. 

Phylogeography can be defined as the concurrent eval-
uation of geographic distributions and phylogenetic rela-
tionships of a set of individuals. This process allows the 
evaluation of a species’ evolutionary history over space and 
time (Templeton 2004). Further, phylogeography can be 
employed to assess genetic exchange among populations 
and distinguish genetic variation caused by gene flow from 
variation derived from common ancestry (Schaal et al. 
1998). One potential drawback is that there is no means to 
establish if enough individuals or geographical sites have 
been sampled to ensure that the pattern did not arise by 
chance alone (Templeton 2004). However, this approach 
has been used to successfully evaluate gene flow and popu-
lation structure in plants and insects. For example, six 
microsatellite loci were used to examine the phylogeog-
raphy of lodgepole pine, which demonstrated geographical 
clustering of the recent clades, further supporting the hypo-
thesis of rapid expansion of pines followed by local popu-
lation differentiation (Marshall et al. 2002). Microsatellites 
were also used to assess geographic origin and relatedness 
in Arabidopsis thaliana, which showed general congruence 
with a few exceptions. Some of the exceptions could be due 
their reticulate evolutionary history (Symonds and Lloyd 
2003). An endangered tree in China, Fraxinus mandshurica, 
was evaluated with microsatellites for genetic diversity and 
spatial structure, which illustrated that intra-population 
diversity significantly decreased with latitude and no clear 
geographic genetic structure was identified (Hu et al. 2008). 
Unfortunately, phylogeographical studies do not always 
show a clear relationship between similar phylogenetic rela-
tionships with similar geographic origin. The two common 
reasons this occurs is that the genealogy is incorrect and 
more markers are required or the phylogenetic relationships 
are correct, thus, an alternative explanation must be sought 
(Symonds and Lloyd 2003). 

Molecular marker research studies have helped to cla-
rify, validate, or change the current dogma of assumed rela-
tionships among plants. An extensive study of potato (Sola-
num spp.) landraces and wild progenitors with microsatel-
lite markers established a need for reclassifying cultivated 
potatoes into four species. This study suggested that ploidy 
which was important traditionally as an indicator to cate-
gorize potato accessions was a poor character to employ to 
classify individuals (Spooner et al. 2007). Microsatellites 
from organelle genomes (mitochondria and chloroplast) 
were utilized to evaluate the phylogenetic relationships of 
rice, sorghum, maize, and wheat (Rajendrakumar et al. 
2008). This analysis verified that rice and sorghum were 
closely related (phylogenetically), while wheat was more 
distant to rice and sorghum, which helped validate the syn-
teny between these related grass genomes (Rajendrakumar 
et al. 2008). 

Interspecific genetic diversity and crop domestication 
analyses are also common results of microsatellite derived 
phylogenies. Rice, which is a staple crop around the world, 
showed ample genetic diversity with an average polymor-
phism information content (PIC value) of 0.707 and a clear 
demarcation in the phylogenetic relationships between land-
races, cultivars, and wild relatives (Ram et al. 2007). 
Microsatellites were also used to assess genetic variability 
in 75 avocado accessions which revealed a deficit of hetero-
zygotes in most loci due to a positive fixation index (F), 
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departure from Hard-Weinberg expectations, and clustering 
of accessions into three major groups in the phylogenetic 
tree (Alcaraz and Hormaza 2007). Maize, an important 
agronomic crop, has been extensively evaluated with micro-
satellite markers. One study evaluated 260 inbred lines with 
94 microsatellites demonstrated that the phylogenetic rela-
tionships and a model based clustering analysis were con-
gruent with pedigree information (Liu et al. 2003). A dif-
ferent microsatellite derived phylogeny study demonstrated 
that maize, contrary to proposed opinion to explain its high 
genetic diversity, had a single domestication event from 
teosinte (wild relative) about 9,000 years ago (Matsuoka et 
al. 2002). A monophyletic origin of cultivated pearl millet 
(Pennisetum glaucum) was also identified by employing 
microsatellites, phylogeny, and population structure analy-
ses (Oumar et al. 2008). 

Applying microsatellite markers and phylogenetics are 
indispensable tools for managing plant germplasm col-
lections because the marker data can provide information 
on the diversity or homogeneity of a species of interest. 
Genetic diversity and phylogenetic relationships were eval-
uated from germplasm collections such as a temperate bam-
boo (Barkley et al. 2005), a citrus variety collection (Bark-
ley et al. 2006), sorghum (Wang et al. 2006, 2009b), and a 
cultivated and wild peanut collection (Barkley et al. 2007). 
Inter- and intraspecific phylogenetic analysis led to the 
identification of a contaminated bamboo plot identified via 
phylogenetic analysis of multiple taxa (Barkley et al. 2005), 
which was subsequently validated by morphology and the 
plot was purged of the contamination. A study of genetic 
diversity and phylogenetic relationships in citrus demons-
trated that there are only a few naturally occurring forms of 
citrus, while the remaining species arose through hybridiza-
tion events from the ancestral species (Barkley et al. 2006). 
These studies focused on germplasm diversity and manage-
ment identified contaminated plots, putative parentage of 
hybrid accessions, genetic diversity, disease resistance, 
population structure, and tentatively classified accessions 
into botanical varieties. Furthermore, this technology can 
also help researchers indicate potential needs for expansion 
of a germplasm particular collection based on a lack of 
diversity within a species. 

 
CONCLUDING REMARKS 
 
In silico analysis of phylogenetic relationships, genetic 
diversity, and population stratification in plants and insects 
has become common practice since the discovery of micro-
satellites and availability of computers and free software 
programs to handle these types of data sets. Data mining 
and analysis of sizeable microsatellite data sets would be 
impractical without the aid of in silico analysis from mining 
the large number of sequences currently deposited in pub-
lically available sequence databases for microsatellites to 
employing software programs to calculating complex model 
based ancestry estimations on multilocus genotypes. As 
time goes on, computation will continue to become more 
powerful, sequence databases will continue to expand, and 
the need for more complexity in mathematical models to 
analyze data will continue to be realized. Numerous prog-
rams currently exist for in silico data analysis and mining. 
This review is not meant to support or endorse any particu-
lar program; but, provides some resources and information 
for a researcher to consider, navigate, and utilize. The user 
should, however, select in silico programs in which the 
underlying models and output can be easily interpreted and 
help them to elucidate principles, solve questions, and 
achieve their research goals for their species of interest. 
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