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ABSTRACT 
In order to determine stable and drought-tolerant bread wheat genotypes and relative contribution of yield components in the genotype-
environment (GE) interaction, field experiments were conducted with 14 genotypes for 3 consecutive years (2008-2011) under rainfed 
and irrigated conditions. Descriptive diagrams and combined analysis of variance indicated highly significant differences for GE 
interaction and high variability for yield and yield components indicating the possibility of selection for stable and drought-tolerant 
genotypes. AMMI-stability value (ASV) and yield stability index (YSI) discriminated genotype 10 as the most stable genotype with high 
grain yield (534.5 g). Path analysis revealed that the relative contribution of a genotypic component 1000-seed weight (TSW) in the 
phenotypic stability of grain yield was higher than that of number of spike per plant (SPP) and number of seed per spike (SPS). 
Environmental components of GE interaction exhibited that absolute value of r1 (first environmental component) in all environments was 
higher than the second (r2) and third (r3) environmental components. In addition, variation of r1 was more than r2 and r3, and that of r2 was 
higher than r3 indicating that sensitivity of number of spike per m2 (NS) and SPS to the environmental variation was higher than TSW. 
Therefore high grain yield and stability of genotype 10 was because of higher genotypic component V3 (TSW) and lower environmental 
components r3 (TSW). Path coefficient and cluster analysis of drought susceptibility index (DSI) discriminated genotypes Croos alborz, 
Ww33G.Vee"S".Mrn.3.Atilla.Tjn, Aazar-2, Sardari, Azd.HD2172..Kayson.Glenson.3.170-28.Ning8201, Ww33G.Vee"S".Mrn.3.Atilla.Tjn 
and T.AEST..SPRW"S"..CA8055.3.BACANORA88ICW92-0477 as drought tolerant with high grain yield for rainfed condition, while 
genotypes Shi#4414.Crow"S"..Fow-1 and CHAM-8.MAYON"S'.CW93-0031-1AP-OL-OBR-2AP-1AP-OAP as drought sensitive and 
desirable for irrigated condition. 
_____________________________________________________________________________________________________________ 
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INTRODUCTION 
 
Wheat has an important place in nourishment of people all 
over the world. It is necessary to increase wheat production 
to remove nourishment needs of the excessive population. 
Borlaug and Dowswell (1997) estimated that global wheat 
production must increase by 40% until 2020 to meet the 
rising demand for wheat grain. It is apparent that the yield 
production of wheat is a joint contribution of both genes as 
well as environment. Wheat is the most important cereal 
crop in Iran, with a total area of 5.2 million hectares. Wheat 
is grown under irrigated and rainfed conditions. Rainfed 
wheat covers two-thirds of the total wheat area in Iran, but 
accounts for about one-thirds of the total wheat production 
(Mohammadi and Haghparast 2011). The genotype-envi-
ronment (GE) interaction reduces association between 
phenotypic and genotypic values and leads to bias in the 
estimates of gene effects and combining ability for various 
characters sensitive to environmental variations. The exis-
tence of GE interaction complicates the identification of 
superior genotypes for a range of environments and calls for 
the evaluation of genotypes in many environments to deter-
mine their true genetic potential (Yaghotipour and Farshad-
far 2007; Atta and Shah 2009; Aghaee et al. 2010). 

Various statistical methods [parametric (univariate and 
multivariate) and non-parametric] have been investigated 
and proposed to study the GE interactions (Lin et al. 1986; 
Becker and Léon 1988; Crossa 1990; Lin and Binns 1994; 
Mohammadi and Amri 2008; Mohammadi et al. 2009; 
Pourdad and Ghaffari 2009; Mohammadi et al. 2010b). 

The main problem with stability statistics is that they do 
not provide an accurate picture of the complete response 
pattern (Hohls 1995). The reason is that a genotype’s res-
ponse to varying environments is multivariate (Lin et al. 
1986) whereas the stability indices are usually univariate 
(Gauch 1988; Crossa 1990). 

One of the multivariate techniques is the AMMI model. 
The AMMI model combines the analysis of variance for the 
genotype and environment main effects with principal 
component analysis of the GE interaction. The results can 
be plotted in a useful biplot that shows both main and inter-
action effects for both genotypes and environments (Zobel 
et al. 1988; Gauch and Zobel 1996). Purchase et al. (2000) 
developed the AMMI stability value (ASV) based on the 
AMMI model’s IPCA1 and IPCA2 (interaction principal 
components axes 1 and 2, respectively) scores for each 
genotype. The ASV is comparable with the Shukla (1972), 
Wricke (1962) and Eberhart and Russell (1966) stability 
methods. 

Path analysis is a form of multivariate analysis. The 
path analysis approach bears a resemblance to the principal 
component method as it also leads to the construction of a 
multiplicative model for the trait of primary interest. It is, in 
fact, a form of factor analysis. The � parameters in the path 
model are independent factors postulated on the basis of the 
causal relationship between the concerned trait and its com-
ponents (Darvishzadeh et al. 2011; Khazaie et al. 2011). 

Grafius and Thomas (1971) proposed that environmen-
tal stresses that occur during the sequential development of 
yield components constitute the major ingredient of GE 
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interactions of yield. They expressed that expression of an 
economic trait of a crop plant is often the result of a series 
of physiological activities during growth. This type of trait 
is called a complex trait. A complex trait often has no direct 
linkage to the physiological activities that lead to its for-
mation. It represents the final phenotypic expression of a 
complex developmental process during growth. Each of the 
physiological activities usually leads to the development of 
a component trait. Sometimes, a component trait is itself a 
complex trait that can be further broken down into com-
ponents (Farshadfar 1990; Mohammadinejad and Rezaei 
2007; Askarinia et al. 2008). 

It is feasible to incorporate component traits that are 
easily measurable into a "working" developmental model 
for the investigation of the GE interaction. These compo-
nents may themselves be complex traits but each represents 
a major milestone in the fundamental model. One typical 
example is the component traits of crop yield. The grain 
yield of wheat, for example, is formed due to three major 
phases of physiological activity. The first one is the initia-
tion of stems, which involves germination of seeds and 
onset of tillers. This is followed by the ontogeny of "sink" 
organs, i.e., flowers in the heads on top of stems. Finally, 
fertilization followed by photosynthetic activity fills the 
kernels in the heads. Degrees of development of the three 
phases are measured by the three yield components: number 
of heads per plant (X), kernels per head (Y) and kernel 
weight (Z). Grain yield (W) is the multiplicative product of 
the components, i.e., W =X×Y×Z. The developmental rela-
tionship between W and X, Y and Z is sequential, i.e., 
X�Y�Z�W. All physiological activity for the formation 
of W is channeled through X, Y or Z. W has no direct 
relationship to this activity. This sequential relationship 
between yield and yield components was developed into a 
working model for investigating of crop yield by Tai (1975), 
and has been shown to provide a powerful tool for studying 
GE interactions (Fagam et al. 2006; Hui et al. 2008; Das 
and Taliaferro 2009; Yasin and Singh 2010). 

The objectives of the present investigation were (i) 
evaluation of phenotypic stability of bread wheat genotypes 
under rainfed and irrigated conditions (ii) determination of 
the contribution of yield components in the phenotypic sta-
bility and (iii) characterization of drought susceptibility 
index of yield and yield components. 

 
MATERIALS AND METHODS 
 
Plant genetic materials and experimental design 
 
Fourteen genotypes of bread wheat (Triticum aestivum L.) listed in 
Table 1 were received from the Dryland Agriculture Research 
Sub-Institute (Sararood Station). They were assessed using a ran-
domized complete block design with three replications under both 
rainfed and irrigated [two supplementary irrigations: (i) 25 mm 
supplied at early flowering, and (ii) 25 mm at mid-anthesis stages] 
conditions during 2008–2011 growing seasons in the experimental 
field of the College of Agriculture, Razi University, Kermanshah, 
Iran (47° 20´ N latitude, 34° 20´ E longitude and 1351.6 m alti-
tude). Climate in the region is classified as semi-arid with mean 
annual rainfall of 378 mm. Minimum and maximum temperature 
at the research station were -27 and 44°C, respectively. Each geno-
type was planted in 2-m rows and at 15 × 25 cm inter-plant and 
inter-row distances. Fertiliser application was 41 kg N ha–1 and 46 
kg P2O5 ha–1 at planting. The soil of experimental field was clay 
loam with pH 7.1. The seeding rate was 400 seeds m-2 for all plots. 
At the rainfed experiment, water stress was imposed after anthesis. 
Non-stressed plots were irrigated twice after anthesis, while 
stressed plots received no water. In each cropping season, two 
rainfed and irrigated trials were conducted. Environments 1, 3 and 
5 represent rainfed conditions and 2, 4 and 6 represent irrigated 
conditions in 2008-2009, 2009-2010 and 2010-2011 cropping sea-
sons, respectively. 

The seeds were planted in early October and harvested in 
early July. At harvest time, yield potential (Yp), stress yield (Ys), 
number of spikes m-2 (NS) (X), number of seed per spike (SPS) 

(Y), 1000-seed weight (TSW) (Z) and grain yield (GY) were re-
corded from 2 rows of 2.5 m in length. The environments were 
considered as random factors, while genotypes as fixed factors. 

 
Statistical analysis 
 
The grain yield and yield components data were subjected to com-
bined analysis of variance, mean comparison using Duncan’s mul-
tiple range test (DMRT; Duncan 1955) and following biometrical 
analysis by statistical software SPSS ver. 16.0 (2007), MSTATC 
(Michigan State University 1991) and Microsoft Excel ver. 12 
(2007). 

 
1. AMMI stability value (ASV) 
 
The AMMI stability value (ASV), as described by Purchase et al. 
(2000), was calculated as follows: 
 
 
 

 
where SSIPCA1/SSIPCA2 is the weight given to the IPCA1-value by 
dividing the IPCA1 sum of squares by the IPCA2 sum of squares. 
The larger the IPCA (interaction principal component analysis) 
score, either negative or positive, the more specifically adapted a 
genotype is to certain environments. Smaller ASV scores indicate 
a more stable genotype across environments. 

 
2. Yield stability index (YSI) 
 
A new approached known as YSI was calculated by the following 
formula: 
 
YSI = RASV + RY 
 
where RASV is the rank of AMMI stability value and RY is the 
rank of mean grain yield of genotypes (RY) across environments. 
YSI incorporate both mean yield and stability in a single criterion. 
Low value of this parameter shows desirable genotypes with high 
mean yield and stability (Farshadfar 2008). 

 
3. Path analysis of GE interaction 
 
If a group of m genotypes is tested over n environments, the yield 
of the ith genotype in the jth environment can be expressed as: 
 
Wij = μwi + V1iR1j + V2iR2j + V3iR3j + eij 
 
where Vgi = V’gi�wi for g = 1, 2 and 3 and �2

wi is the variance of 
yields of the ith genotype. 

The observed yield (Wij) is composed by a mean genotypic 
effect (μwi), three multiplicative terms of the genotype-environ-
ment interaction effects formed by three genotypic components 
(V1i, V2i and V3i), and three environmental components (R1j, R2j 
and R3j), and an error deviate (eij). The three genotypic compo-
nents each represents the efficiency of a genotype to utilize a stan-
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Table 1 Pedigree of investigated genotypes. 
Code Pedigree/name 
1 Croos alborz 
2 Aazar-2 
3 Sardari 
4 Shi#4414.Crow"S"..Fow-1 
5 Ww33G.Vee"S".Mrn.3.Atilla.Tjn 
6 Shi#4414.Crow"S"..Vee"s:.Nac 
7 Ww33G.Vee"S".Mrn.4.HD2172.Bloudan ..Azd.3..san.Ald"s"..Avd
8 Azd.HD2172..Kayson.Glenson.3.170-28.Ning8201 
9 TEVEE S. KARAWAN S 
10 Ww33G.Vee"S".Mrn.3.Atilla.Tjn 
11 CHAM-8.MAYON"S'.CW93-0031-1AP-OL-OBR-2AP-1AP-OAP
12 T.AEST..SPRW"S"..CA8055.3.BACANORA88.CW92-0477-… 
13 T.AEST..SPRW"S"..CA8055.3.BACANORA88ICW92-0477-… 
14 AZD.HD2172..Pltoma.Cucurp88 
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dard deviation unit input in one of the three environmental com-
ponents during the succeeding stages of plant development for the 
formation of final yield (Tai 1975, 1979; Tai et al. 1994). 

 
4. Path analysis of drought susceptibility index (DSIi) 
 
Using the Tai et al. (1994) model, DSIi was calculated for each 
genotype as: 
 
DSIi = c (V1i (r11 – r13) + V2i (r21 – r23) + V3i (r31 – r33)) = DSIi1 + 
DSIi2 + DSIi3 
 
where c = 1/(1 – DI) = constant for all cultivars, 
 
DI = drought intensity =       , 
 
   and   are the mean of all cultivars under stress and non stress 
conditions, respectively and DSIik = c (V1k (rk1 – rk3)), k = 1, 2 and 
3. The three of DSIik in the index equation represent the com-
ponents that contributed to drought susceptibility during succes-
sive stages of growth. V1i and rij are genotypic and environmental 
components resulted from path coefficients analysis over environ-

ments. Mean of each genotype over rainfed and irrigated con-
ditions was used for calculating DSIi of each yield components for 
each variety. 
 
RESULTS AND DISCUSSION 
 
Descriptive diagrams 
 
Descriptive diagram of yield and yield components indi-
cated GE interaction and high variability for GY, NS, TSW 
and SPS over different environments and genotypes (Fig. 1). 
The variation for GY was low from genotype 1 to genotype 
4 but high from genotype 5 to genotype 14. High GE inter-
action was found in environments 5 and 6 for GY. 

The variation and GE interaction of NS (Fig. 1) was 
lower than GY. The GE interaction of NS for genotypes 3 
and 8 was higher than other genotypes in different environ-
ments. Variation of genotypes for NS in environments 1, 2 
and 4, was higher than other environments. 

 The variation and GE interaction of TSW (Fig. 1) was 
higher than GY and NS. This variation was very low for 
genotypes 3 and 8 over different environments, but high 
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Fig. 1 Descriptive diagram of GE interaction for GY, NS, TSW and SPS. Environments 1, 3 and 5 represent rainfed conditions and environments 2, 4 
and 6 represent irrigated conditions in 2008-2009, 2009-2010 and 2010-2011 cropping seasons, respectively. 
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variation was found for genotypes 1, 2, 4 and 7. Variability 
of genotypes for TSW in environments 2 and 5 was lower 
than other environments. 

Variability of SPS (Fig. 1) was lower than GY and TSW. 
The variation of SPS in different environments was very 
low for genotypes 2, 5 and 14, but very high in genotypes 1, 
3, 4, 6, 11 and 13. Variation of genotypes for SPS in envi-
ronments 1 and 6 was lower than other environments. 
Kozak (2010) suggested three plots namely regular perfor-
mance plot (RPP), environment-centered performance plot 
(ECPP) and environment-standardized performance plot 
(ESPP) as a simplest method for analysis of both static and 
dynamic yield stability in a set genotypes evaluated in a 
range of environments. Kozak (2010) studied six soybean 
genotypes in eight environments and concluded that RPP in 
comparison to ECPP and ESPP is suitable for studying 
genotype stability in a static sense and provides more infor-
mation about environments. ECPP was useful for presenting 
genotype stability in a dynamic sense and the information 
provided by ESPP was poor in the both static and dynamic 
senses. 

 
Combined analysis of variance 
 
Combined analysis of variance (Table 2) over locations 
(stress and non-stress) and years resulted in highly signifi-
cant differences (P < 0.01) for genotypes, environments and 
GE interaction effects. The significant GE interactions 
suggest that grain yield and yield components of genotypes 
varied across irrigated and rainfed conditions. Significant 
differences for genotypes, environments and GE interaction 
indicated the effect of environments in the GE interaction, 
genetic variability among the entries and possibility of 
selection for stable genotypes and determination of the con-
tribution of yield components in the stability of GY. Chan-
dra et al. (1974) reported that GE interaction with location 
is more important than GE interaction with year. As the GE 
interaction was significant, therefore we can further proceed 
and estimate phenotypic stability (Farshadfar and Sutkla 
2006; Osiru et al. 2009). 

 
 
 
 
 
 

Mean comparisons 
 
Mean performance (Table 3) of grain yield (GY) and yield 
components over 6 different irrigated and rainfed conditions 
ranged from 616.2 g for genotype 11 to 396 g for genotype 
14. Maximum NS, SPS and TSW were attributed to geno-
types 3, 7 and 8, while minimum NS, SPS and TSW were 
observed for genotypes 12, 3 and 6, respectively. 7 classes 
were obtained for GY. Genotypes 4, 11 and 13 were located 
in class 1(a) with no significance difference. Genotype 14 
with minimum GY was located in class 7 (g) with genotype 
12. Other genotypes were located in classes 2 to 6 and indi-
cated high variability among genotypes for GY. 

 Mean comparison of yield components revealed 7 
classes for NS and SPS, while 9 classes for TSW indicating 
high variability for yield components. Genotypes 3 and 4 
showed maximum NS and were grouped as class 1(a) with 
no significance difference. Genotype 12 was grouped as 
class 7 with minimum NS. The rest of the genotypes were 
located in classes 2 to 6 indicating high variation among 
genotypes for NS. Genotype 7 exhibited maximum SPS and 
class 1(a) with significance difference with other genotypes. 
Other genotypes were located in classes 2 to 6 and a few of 
genotypes were located in especial classes indicating high 
genetic variation among genotypes for SPS. Genotypes 8 
displayed maximum TSW and grouped as class 1(a) with 
genotype 13. Minimum TSW was observed for genotype 6 
and grouped with genotype 9 in class 9 (i). Other genotypes 
were located in classes 2 to 8 and indicating high variation 
among genotypes for TSW. 

 
AMMI stability value (ASV) 
 
Purchase et al. (2000) developed the AMMI stability value 
(ASV) based on the AMMI model’s IPCA1 and IPCA2 
(Interaction Principal Components Axes 1 and 2, respec-
tively) scores for each genotype. The ASV is the distance 
from the coordinate point to the origin in a two dimensional 
graph of IPCA1 scores against IPCA2 scores in the AMMI 
model. The ASV is comparable with the methods of Shukla 
(1972), Wricke (1962) and Eberhart-Russell (1963) stability 
methods. Smaller ASV score indicates a more stable geno-
type across environments. Because the IPCA1 score contri-
butes more to the GE interaction sum of squares, a weighted 
value is needed. This weight is calculated for each genotype 
and each environment according to the relative contribution 

Table 2 Combined analysis of variance analysis for yield and yield components. 
Source df GY TSW SPS NS 
Replication 2 131197.6** 92.605* 15.98ns 114517.1* 
Environment (E) 5 521300.8** 524.45** 149.13** 28379.98** 
Genotype (G) 13 60867.1** 176.41** 812.75** 160136.6** 
GE 65 20097.37* 21.7** 38.42* 12006.35* 
Error 166 6799.23 6.64 14.77 4295.45 

*;** significant at 5% and 1% level of probability, respectively. 
 

Table 3 Mean comparison of yield and yield components, AMMI stability values and yield stability indices of genotypes over rainfed and irrigated 
conditions. 
Genotypes GY NS SPS TSW ASVi YSIi 
1 460.0 ef 434.7 de 32.1 d 36.7 def 5.968 17 
2 472.5 def 530.1 b 25.1 f 38.9 bc 8.228 18 
3 457.7 ef 638.3 a 18.6 g 38.2 bcd 8.688 23 
4 587.1 ab 601.4 a 28.3 e 37.2 cde 8.968 19 
5 490.9 de 428.6 e 39.3 b 32.6 gh 8.168 14 
6 491.7 de 475.2 cd 35.0 c 30.5 i 3.728 15 
7 490.0 5de 349.3 e 42.7 a 35.1 f 4.538 14 
8 518.2 cde 408.8 e 35.0 c 40.5 a 5.148  7 
9 518.0 cde 435.9 de 39.7 b 31.6 hi 4.538 10 
10 534.5 bcd 421.8 e 40.1 b 33.4 g 2.638  5 
11 616.2 a 439.0 de 40.0 b 36.3 ef 6.068  8 
12 424.6 fg 305.7 g 39.0 b 37.7 bcde 14.248 22 
13 571.5 abc 502.3 bc 30.7 d 39.4 ab 6.998 11 
14 396.0 g 349.4 e 31.1 d 38.7 bc 4.238 17 
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of IPCA1 to IPCA2 to the interaction sum of squares. The 
ASV is already applied to identify genotypes in cereal crops 
(i.e., wheat, barely and durum wheat) in compared to other 
phenotypic stability parameters (Mohammadi et al. 2010b). 
The ASV could be used if selection is to be based primary 
on stability (Mohammadi et al. 2010b). In ASV method, a 
genotype with least ASV score is the most stable (Table 3), 
accordingly, genotypes 10 (ASV= 2.638) followed by 6 
(ASV= 3.728) and 14 (ASV= 4.238) were the most stable. 

 
Yield stability index (YSI) 
 
Stability per se should however not be the only parameter 
for selection, because the most stable genotypes would not 
necessarily give the best yield performance (Mohammadi et 
al. 2009, 2010b), hence there is a need for approaches that 
incorporate both mean yield and stability in a single index, 
that is why Kang (1993) introduced three selection criteria 
for simultaneous selection of yield and stability entitled: 
rank – sum (RSM), modified rank – sum (MRSM) and the 
statistics yield – stability (YSi). 

In this regard, as ASV takes into account both IPCA1 
and IPCA2 that justify most of the variation in the GE inter-
action, therefore the rank of ASV and yield mean in such a 
way that the lowest ASV takes the rank one, while the 
highest yield mean takes the rank one and then the ranks are 
summed in a single simultaneous selection index of yield 
and yield stability named as: Yield stability index (YSI). 
The least YSI is considered as the most stable with high 
yield mean. It is applied to identify high yielding stable 
genotypes in cereal crops i.e., maize (Fan et al. 2007) and 
durum wheat (Mohammadi et al. 2010a). Based on the YSI 
(Table 3) the most stable genotype with high grain yield 
was genotype 10 followed by genotypes 8 and 11, respec-
tively. 

 
Contribution of yield components in the grain 
yield stability 
 
Principal hypothesis in path analysis is explanation of varia-
ble group using covariance or correlation matrix of the 
fewer assumptive factors. Essential object of this analysis is 
the three environmental components (r1, r2 and r3) that 
explain the variance of genotype in different environments. 
Hypothesis of three common factors (r1, r2 and r3) and deter-
mination of path coefficients (V1, V2 and V3) were analyzed 
based on the date arrangement of growth yield component. 
In this analysis, there is no need to rotate the factors, 
because position of three factors with their path relations of 
yield and yield components are attended. Achievements of 
this method depend on the credibility of path relation and 
on this fact that three environmental components of the GE 
interaction are common among genotypes. 

Path analysis over different environments (Fig. 2) indi-

cated that direct effect of TSW (0.63) on GY was higher 
than NS (-0.29) and SPS (0.15), while indirect effects of NS 
and SPS on GY through TSW were higher than their direct 
effects. Therefore, the contribution of TSW in the variation 
of GY over different environments was higher than other 
yield components. In other words, instability of GY was 
caused by TSW in different environments. Askarinia et al. 
(2008) in wheat and Mohammadinejad and Rezaei (2007) 
in oat and barley reported the same results. 

Comparison of three genotypic components (V1, V2 and 
V3) for each genotype indicated that V3 was much higher 
than V2 and V2 was higher than V1 (Table 4). Therefore, 
yield formation was supported by following arrangement: 
formation of spike, formation of seed per spike and forma-
tion of 1000 seed weight. It is also concluded that genotypic 
component V3 (TSW) more contribute to GE interaction of 
grain yield, i.e. relative contribution of thousand seed 
weight in the phenotypic stability of grain yield was higher 
than that of number of spike per plant (V1) and number of 
seed per spike (V2). 

Environmental components of the GE interaction (Table 
5) exhibited that absolute value of r1 in all environments 
was higher than r2 and r3. In addition, variation of r1 was 
more than r2 and r3 and that of r2 was higher than r3 indi-
cating that sensitivity of NS and SPS to the environmental 
variation was higher than TSW. 

Table 4 Mean, genotypic components of GE interaction and drought susceptibility index of genotypes over 6 rainfed and irrigated conditions. 
Genotypes Means V1 V2 V3 DSIi 
1 460.08 -20.45 54.05 77.07 0.10 
2 472.58 -17.08 45.13 64.35 0.08 
3 457.78 -9.87 26.09 37.21 0.05 
4 587.06 -37.20 98.32 140.20 0.41 
5 490.96 -18.61 49.18 70.13 0.20 
6 491.74 -30.46 80.48 114.77 0.33 
7 490.05 -30.86 81.55 116.28 0.34 
8 518.28 -18.36 48.52 69.19 0.20 
9 518.06 -10.91 28.84 41.12 0.12 
10 534.58 -34.51 91.19 130.03 0.38 
11 616.28 -45.07 119.11 169.85 0.49 
12 424.69 -24.05 63.56 90.64 0.26 
13 571.50 -30.43 80.40 114.65 0.33 
14 396.06 -22.32 58.99 84.12 0.24 
Average - -25.01 66.10 94.26 0.25 
Standard deviation = SD - 0.18 0.01 0.12 0.13 

 

Fig. 2 Direct and indirect effects of yield components with grain yield 
in path analysis over environments. R1, R2 and R3 environmental com-
ponents; NS: number of spikes/m2; SPS: seeds/spike; SPP: spikes/plant; 
TSW: 1000-seed weight; GY: grain yield. 

Table 5 Environmental components of GE interaction. 
Environments Environmental sources

1 2 3 4 5 6 
r1 4 -24 -16 -8 -4 -16 
r2 4 -16 -4 -8 0 -12 
r3 0 16 0 8 0 -8 
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Therefore high grain yield and stability of genotypes 8, 
10 and 11 are because of higher genotypic component V3 
(TSW) and lower environmental components r3 (TSW). The 
same results were reported by Farshadfar (1999) in wheat 
substitution lines, Mohammadinejad and Rezaei (2007) in 
oat and barley and Askarinia et al. (2008) in wheat. 

 
Path analysis of drought susceptibility index 
 
This procedure can identify cultivars for drought conditions 
and to select tolerant parental lines for breeding new vari-
eties with improved to drought and rainfed environments. 
The drought susceptibility indices (DSIi) of all genotypes 
are shown in the last column in Table 4. They were esti-
mated from the mean of Ys and Yp over 6 different rainfed 
and irrigated conditions. The index ranged from 0.05 of 
genotype 3 (resistant genotype) to 0.49 of genotype 11 (sus-
ceptible genotype). The mean and standard deviation (SD) 
over all genotypes were DSI = 0.25 and SD = 0.13, respec-
tively. Genotypes outside the range DSI ± SD area included 
4 (DSI = 0.41), 11 (DSI = 0.49), 1 (DSI = 0.10), 2 (0.08) 
and 3 (DSI= 0.05). The first two were susceptible genotypes 
whereas the latter three, particularly genotype 3, were resis-
tant genotypes. 

 
Cluster analysis 
 
The three components (DSI1, DSI2 and DSI3) and average 
grain yield (Table 6) were used in a cluster analysis (Kho-
dadadi et al. 2011). Discriminant analysis of the clusters 
grouped the genotypes into three different classes. The first 
group included drought-resistant genotypes 1, 5, 2, 3, 8, 10 
and 13 with high grain yield and desirable for rainfed con-
ditions. The second group included semi-tolerant (semi-sen-
sitive) genotypes 6, 7, 12, 14, and 9, while genotypes 4 and 
11 formed the third group (drought sensitive) and recom-
mended for irrigated condition (Fig. 3). Groups 1 and 3 are 
suggested for hybridization programs to produce recombi-
nant inbred lines for QTL (quantitative trait loci) mapping 
or genetic analysis of drought tolerance indicators using 
diallel mating design or generation mean analysis. 

 
CONCLUSIONS 
 
It is common that researchers use grain yield for analysis of 
stability. As yield is a complex trait, therefore we have to 
find out which components contribute more to yield stabil-
ity. The reason is that components are simple traits with 
higher heritability than complex trait and easier for im-
provement. There are three methods to discover relative 
contribution of components in the yield stability (log 
method, covariance method and path analysis method). As 
drought susceptibility index is also calculated based on the 
yield (complex trait) in the stress and nonstressed con-
ditions, hence by linking the results of path analysis to the 

formula of drought susceptibility index we can identify 
relative contribution of yield components in the drought 
susceptibility index and use that simple component for im-
provement of drought tolerance. Using the above mentioned 
logic 1000-seed weight indicated a more important role in 
the improvement of stability and less contribution in the 
drought susceptibility index. 
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