Molecular Markers in Potato Cultivars Treated with Ribosome-Inactivating Proteins

Heba Mahfouze1 • Khalid El-Dougoud2 • Badawi Othman2 • Mostafa Gomaa1

Keywords: ISSR-PCR, Mirabilis jalapa, Phytolacca americana, P. acinosa

INTRODUCTION

Plant viruses continue to be a major problem in the cultivation of many vegetable crops throughout the world. These pathogens were usually controlled using conventional measures such as crop rotation and other cultivation techniques, early detection, destruction of infected source plants, cross-protection, breeding for resistance, and chemical control of their vectors. Increased knowledge of both the molecular genetics of plant viruses and their hosts’ natural defense systems have resulted in the development of a number of novel ways to control virus diseases in plants (Bos 2000).

Ribosome-inactivating proteins (RIPs) are of great interest for their supposed role as endogenous defense proteins and their catalytic activity. RIPs inhibit protein biosynthesis in eukaryotes by virtue of their N-glycosidic cleavage activity of the rRNA large subunit. Through this mechanism, the binding of elongation factor 2 is prevented, with the consequent arrest of protein synthesis, but they can also stimulate endogenous defense mechanisms when expressed in plants (Ikawati et al. 2006).

RIPs also display a variety of biological activities such as broad-spectrum antiviral activity against plant and animal viruses, antibacterial and antifungal activities (Hur et al. 1997; Wang et al. 1997; Vivanco et al. 1999; Vivanco and Flores 2000; Corrado et al. 2005; Picard 2005). A number of RIPs have also been successfully tested as therapeutic agents against human immunodeficiency virus (HIV)-1 (Zarling et al. 1990; Huang 1991) and anticancer (Frankell et al. 1999; Talib and Mahasneh 2010). RIPs have been isolated from many different plants species including pokeweed (Phytolacca americana), P. acinosa and the marvel of Peru (Mirabilis jalapa) (Barbieri et al. 1993; Vivanco et al. 1999).

The primary objective of this report was to study the inheritance of resistance to Potato virus Y (PVY) in potato cultivars treated with RIPs using ISSR-PCR since there is still limited genetic information on RIPs.

MATERIALS AND METHODS

Plant materials

P. americana, P. acinosa and M. jalapa seeds were collected at the Leibniz Institute of Plant Science and Crop Plant Research (IPK), Gatersleben, Germany. Seeds were sown in 14-cm diameter pots in a sterilized medium composed of peat, vermiculite and sand (7: 3: 1, v/v/v). The pots were irrigated until drainage with a nutrient solution consisting of: 1.5 ml/l of a commercial fertilizer (N: P: K, 19: 19: 19) and were kept in a greenhouse for approximately three weeks until they had germinated. The plants were maintained in the greenhouse under 16-h photoperiod at 1,000 ft-c and 25/20°C day/night temperature.

Original Research Paper
Source of PVYNTN strain

The necrotic strain of PVY, i.e., PVYNTN was supplied from the Virology Laboratory, Department of Agriculture Microbiology, Faculty of Agriculture, University of Ain Shams. It was previously isolated and identified from systemically-infected potato plants (Mahfouze 2003). The isolate was maintained in thorn apple (Datura metel L.) plants as propagation host of PVYNTN strain. Systemically infected leaves were used as sources of inoculum for all experiments (Fig. 1).

Determination of RIP concentration

The protein content was determined according to Bradford (1976) by using bovine serum albumin as a standard protein.

Preventive treatment with AVP extracts

Five potato cultivars (‘Selan’, ‘Spunta’, ‘Cara’, ‘Diamond’, and ‘Nicola’) were tested for their virus-free status by the double antibody sandwich enzyme linked immunosorbent assay technique (DAS-ELISA). Random complete experimental design block was used. 25 tubers from each cultivar were planted in an open-field for three winter seasons (2009-2011).

The aqueous extract of P. americana, P. acinosa and M. jalapa leaves was diluted 1:5 (w/v) in distilled H\textsubscript{2}O. 30-days-old potato upper young leaves were sprayed with AVP extracts (100 μg/ml) by manually rubbing them, followed by viral inoculation. The inoculum consisted of PVYNTN strain in leaf sap diluted 1:2 (w/v) in 10 mM phosphate buffer (pH 7.2). Systemic symptoms were recorded 21-30 days after virus inoculation (Vivanco et al. 1999). Control treatments consisted of plants inoculated with the sap from virus-infected plants without any pretreatment. In addition, there was a second healthy control. The percentage of viral inhibition in the treatments was analyzed with a random distribution model, each plant serving as an experimental unit. Potato leaves and tubers of healthy plants were collected 30 days after inoculation and stored at 4°C for DAS-ELISA analysis.

Antiviral effect of RIPs on PVYNTN-infected \textit{D. metel} plants

\textit{D. metel} plants infected with PVYNTN strain (Fig. 1) were sprayed with plant extracts from \textit{P. americana}, \textit{P. acinosa} and \textit{M. jalapa} and symptoms were observed daily for month.

DAS-ELISA

All the samples were tested for the presence of PVYNTN by DAS-ELISA as described by Clark and Adams (1977) using the PVY ELISA kit provided by Sanofi Company Sante Animal, Paris, France. Polystyrene plates were coated with immunoglobulin (IgGs) diluted in coating buffer (1.59 g Na\textsubscript{2}CO\textsubscript{3}, 2.93 g NaHCO\textsubscript{3}, 0.20 g Na\textsubscript{2}N\textsubscript{a}, making up to 1 liter using diH\textsubscript{2}O, pH 9.6) and incubated at 37°C for 4 h. The plates were then washed three times with washing buffer (8.0 g NaCl, 0.20 g KH\textsubscript{2}PO\textsubscript{4}, 1.15 g Na\textsubscript{2}HPO\textsubscript{4}, 0.20 g KCl, 0.20 g NaN\textsubscript{3}, making up to 1 liter using diH\textsubscript{2}O) containing 0.5 ml Tween-20/L, pH 7.4 (PBST\textsubscript{v})), at 3-min intervals. 100-μl samples were loaded in duplicate into wells of a polystyrene microtitre plate. After loading 100 μl of diluted extracts, the plates were incubated overnight at 4°C. After washing, 100 μl of conjugated antibodies (0.2 g bovine serum albumin, 100 μl PBST\textsubscript{v}) were added to each well and the plate was incubated at 37°C for 4 h. After 3 additional washes for 3 min, freshly prepared p-nitrophenylphosphate in substrate buffer (1 mg/ml) were loaded to each well. The plate was incubated at room temperature and photometric measurements were made at 405 nm (ELX 800 Universal Microplate Reader, Bio-Tek Instruments, Inc., Winooski, USA) after 2 h. Samples were considered to be positive if their absorbance values were more than 2.5 times greater than the values of the negative control. ELISA was carried out with four repetitions including positive (PVY-infected potato plant) and negative controls (healthy potato plant).

Table 1: DAS-ELISA of 10X PCR buffer (2.5 μl), 25 mM MgCl\textsubscript{2} (2.5 μl), 40 mM dNTPs (0.5 μl), Taq DNA polymerase (1 μl, 1 U/μl) and 0.4 μM primer (2 μl). Amplification was carried out in a DNA thermocycler (Bio- metra, Göttingen, Germany) under the following conditions: One cycle of 3 min at 94°C followed by 28 cycles of 45 s at 94°C, annealing temperature (Table 1) for 30 s and 72°C for 2 min followed by a final extension for 6 min at 72°C.

Amplification product and gel analysis

The amplified DNA (15 μl) for all samples was electrophoresed on a 1% agarose (BioRoN, Germany) gel containing ethidium bromide (0.5 μg/ml) in 1X TBE buffer (89 mM Tris-HCl, 89 mM boric acid, 2.5 mM EDTA, pH 8.3) at a constant 75 V. The amplification fragment was determined with UV transilluminator (Uvitec, UK). The size of each band was estimated against a reference size marker of 100 bp DNA ladder (BioRoN, Germany). The gel was analysed by a programme (UVI Gelsec ver. 12.4, 1999-2005, USA).

RESULTS AND DISCUSSION

Inhibitory activity of AVP extracts against PVYX strain

AVP-extracts were applied to the leaves of five cultivars of potato. Results show that the AVP-leaf extracts diluted 1:5 (v/v) in distilled water were strongly inhibitory to PVYNTN infection, because almost 100% inhibition was confirmed by DAS-ELISA (Table 2). On the other hand, PVYNTN infected D. metel L. plants have systemic symptoms which have been sprayed with antiviral plant extracts gave 100% infection. These results were confirmed by DAS-ELISA. These results were in an agreement with Vivanco et al. (1999), and Sharma et al. (2004) found that extracts of \textit{Mirabilis jalapa}, containing a RIP, against infection by \textit{Potato virus X}, PVY, \textit{Potato leaf roll virus}, and \textit{Potato spindle tuber viroid}. Root extracts of \textit{M. jalapa} sprayed on test plants 24 h before virus or viroid inoculation inhibited infection by almost 100%, as corroborated by infectivity assays and the nucleic acid spot hybridization test. Also, mentioned that privation of PVYNTN infection is due to the inhibition of viral protein and enzyme synthesis. It has been reported that, some RIP, such as Saporin-L1 a RIP from \textit{Saponaria officinalis} release many from adenine residues not only tRNA but from other tested RNAs from poly(A), and from herring sperm DNA. RIP is a good candidate for transformation of potato cultivars and has already been established with other RIP from tobacco with adequate promoters (Vivanco et al. 1999). The RIP responsive genes could be expressed in the vacuoles or extracellular spaces of the potato plants; thus a broad spectrum virus resistant plant
could be produced. Alternatively, RIP antiviral activity could be used in input agricultural systems, such as the spraying of leaf or root extracts on leaves of various crops to prevent or control viral infection (Davies 1996; Stripe et al. 1996; Wang et al. 1997; Vivanco et al. 1999). Different RIPS have been reported from about 50 plant species covering 17 families. Some families include many RIP-producing species, particularly Cucurbitaceae, Euphorbiaceae, Asteraceae, Basellaceae, Brassicaceae, Leguminosae, Nyctaginaceae, Oxalidaceae, Solanaceae, Tropaeolaceae, Umbelliferae Poaceae, and families belonging to the super-order Caryophyllales (Kwon et al. 2000; Sharma et al. 2004).

ISSR-PCR analysis

Changes in DNA caused by AVP-pretreated potato cultivars resulted genetic variations detected by ISSR-PCR analysis were performed using five random primers compared to PVYNNTN-infected plants and the healthy control.

Primer ISSR-1 revealed 16 amplified fragments with sizes ranged from 1105 to 190 bp, 14 amplified fragments were polymorphic with 87.50% polymorphism and two were monomorphic bands with molecular weights (MWs) of 290 and 250 bp detected in all AVP-pretreated, PVYNNTN-infected plants and the control of the five cultivars (Fig. 2; Table 2). In addition, one unique marker with MW 650 bp was existed in the AVP-pretreated plants of ‘Diamond’ cultivar, and disappeared in PVYNNTN-infected plants and the healthy control. Two specific bands at MWs 540 and 450 bp appeared uniquely in AVP-pretreated plants of ‘Nicola’ (Table 2), however, primer ISSR-2 generated 13 amplification fragments with sizes ranging from 580 to 140 bp, whereas nine fragments were polymorphic with 69.23% polymorphism. The other four fragments with MWs 275; 255; 200 and 190 bp were monomorphic detected among AVP-pretreated, PVYNNTN-infected plants and the healthy control of the five cultivars (Fig. 2; Table 2). Moreover, AVP-pretreated potato plants of ‘Spunta’ cultivar scored the number highest of molecular markers (three) with MWs 410, 330 and 220 bp followed by AVP-pretreated potato plants of ‘Selan’ and ‘Nicola’ (one each) at 180 and 140 bp, respectively (Table 2). On the other hand, primer ISSR-3 produced 14 amplified fragments with sizes ranging between 800 and 130 bp, whereas 5 fragments were polymorphic with 35.71% polymorphism. Five amplified fragments with MWs 385, 320, 290, 225 and 130 bp were monomorphic bands (Fig. 2; Table 2), four specific bands with 710; 450; 260 and 185 bp were induced in AVP-pretreated potato plants of ‘Selan’, while AVP-pretreated plants of ‘Spunta’ showed two molecular markers with MWs 710 and 655 bp, however AVP-pretreated plants of ‘Nicola’ appeared two markers of 450 and 260 bp (Table 2). At the same time, 9 amplified fragments appeared with primer ISSR-4 ranging from 470 to 230 bp. Thus, three bands were polymorphic with 33.33% polymorphism and the other six were monomorphic bands with MWs (425; 410; 365; 310; 280 and 250 bp) (Fig. 2; Table 2). One specific band of 435 bp was scored in AVP-pretreated plants of ‘Selan’ and ‘Nicola’ (Table 2). Primer ISSR-5 induced 11 amplified bands with MWs ranging from 640 to 90 bp, eight bands were polymorphic with 72.73% polymorphism. The remaining three were commonly bands with molecular sizes 210; 160 and 110 bp (Fig. 2; Table 2). Moreover, the AVP-pretreated potato plants of ‘Selan’ and ‘Nicola’ showed three unique markers at (640; 490 and 370 bp), (640; 370 and 220 bp) and (640; 220 and 120 bp) (Table 2). In spite of the importance of the virus’

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Polymorphism</th>
<th>No. of markers and their molecular weight (pb)</th>
<th>Potato cultivars</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISSR-1</td>
<td>Total P %</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>87.50</td>
<td>18.75</td>
</tr>
<tr>
<td>ISSR-2</td>
<td>13</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>69.23</td>
<td>38.46</td>
<td>1</td>
</tr>
<tr>
<td>ISSR-3</td>
<td>14</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>64.28</td>
<td>35.71</td>
<td>4</td>
</tr>
<tr>
<td>ISSR-4</td>
<td>9</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>33.33</td>
<td>11.11</td>
<td>0</td>
</tr>
<tr>
<td>ISSR-5</td>
<td>11</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>72.73</td>
<td>36.36</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>63</td>
<td>43</td>
<td>18</td>
</tr>
</tbody>
</table>

*P = Number of polymorphic bands with polymorphic percentages.
**Total = Total number of amplified fragments. + = presence of marker band.

Table 2 ISSR amplified bands, polymorphic bands and unique markers for AVP-pretreated potato cultivars using five primers.
resistance in potato crop, the progress made in resistance breeding to PVYNNTN in potato is rarely and it should be taken into consideration in the future breeding programme.

The spotlight on plant extracts containing RIPs as antiviral activity which could be used in agricultural systems, such as the spraying of leave or root extracts on leaves of various crops to prevent or control viral infection. RIPs have shown broad spectrum antiviral activity against RNA, DNA, and plant and animal viruses (Wang and Tumer 2000). El-Dougdoug et al. (2007) used water extract of Khella (0.3%) and black cumin (3.0%) led to elimination of Tomato yellow leaf curl geminiviruses (TYLCV) and produced virus-free tomato by tissue culture technique, whereas the plantlets gave negative results using polymerase chain reaction (PCR) with specific primer and nucleic acid hybridization (NASH) with specific probe. Garlic bulbil leads to partial elimination of TYLCV. Using these extracts under nursery and open field condition led to reduction of TYLCV concentration, delay of external symptoms, whereas PCR technique and NASH test illustrated that the virus was existent with low concentration in plants sprayed with Khella and black cumin and garlic bulbils. In addition, spraying with plant extracts led to reduction in population of complete insect and nemph of whiteflies compared with Cidial 50L, Cilecron 72% and polioonul insecticides. Enzyme linked immunosorbant assay (ELISA) illustrated that tomato plants sprayed with plant extracts under field conditions were free from Tomato mosaic virus (ToMV), Cucumber mosaic virus (CMV), PVX, and PVY. On the other hand, using of the plant extracts increases plant growth (plant height, leaf area, number of branches, fresh and dry weight and chlorophyll content), as well as yield (number of flowers and fruits per tomato plant). Consequently, ISSR-PCR profiles as microsatellites (Garcia et al. 2007) can be used to detect genetic diversity among the AVP-pretreated, the PVYNNTN, infected and the healthy control plants of five potato cultivars. Many molecular marker techniques are available today. PCR-based approaches are in demand because of their simplicity and requirement for only small quantities of sample DNA (Heldák et al. 2007). Non-anchored (ISSRs) are arbitrary multiloci markers produced by PCR amplification with a microsatellite primer. They are advantageous because no prior genomic information is required for their use. We found that technique stable across a wide range of PCR parameters. Species tested with 2 tri-nucleotide and 2 tetra-nucleotide primers. Thus, non-anchored ISSR markers are a good choice for DNA fingerprinting. Bornet et al. (2002) reported that ISSR-PCR use to assess genetic diversity between cultivated potatoes (Solanum tuberosum subs. tuberosum). ISSR technology rapidly reveals high polymorphic fingerprints and thus determines the genetic diversity among potato cultivars.

ACKNOWLEDGEMENTS

The authors thank Dr. Jaime A. Teixeira da Silva for significant improvements to style and language.

REFERENCES

Bornet B, Goraguer F, Joly G, Branchard M (1998) Genetic diversity in European and Argentinian cultivated potatoes (Solanum tuberosum subs. tuberosum) detected by inter-simple sequence repeats (ISSRs). Genome 45, 481-484
El-Dougdoug KH, Gomaa HA, Daoud RA (2007) Elimination of some viruses infecting tomato plants by phyto-antivirus. Research Journal of Agriculture and Biological Sciences 3 (6), 994-1001
Garcia SAL, Van der Lee TAJ, Ferreira CF, Hekker BT, Zapater MF, Goodwin SB, Guzmán M, Kema GHI, Souza MT (2010) Variable number of tandem repeat markers in the genome sequence of Mycosphaerella fijiensis, the causal agent of black leaf streak disease of banana (Musa spp.). Genetics and Molecular Research 9 (4), 2207-2212
Heldák J, Bezo M, Štefánová V, Gašliková A (2007) Selection of DNA markers for detection of extreme resistance to Potato virus Y in tetraploid potato
Molecular markers in potato cultivars treated with ribosome inactivating proteins. Mahfouze et al.

(Solanum tuberosum L.) F₁ progenies. Czech Journal of Genetics and Plant Breeding 43 (4), 125-134

Huang LS, Huang PL, Kung HL, Li BQ, Huang P, Huang HI, Chen HC (1991) An anti-human immunodeficiency virus protein from Trichosanthes kirilowii that is non toxic to intact cells. Proceeding of the National Academy of Sciences USA 88, 6570-6574

Mahfouze SA (2003) Diagnosis of some plant viruses using modern techniques. MSc thesis, Faculty of Agriculture, University of Ain Shams, Egypt, 179 pp

Plant Physiology 134, 171-181

Vivanco JM, Flores HE (2000) Biosynthesis of ribosome-inactivation proteins from callus and cell suspension cultures of Mirabilis expansa (Ruiz & Pavon). Plant Cell Reports 19, 1033-1039

Wang P, Zoubenko O, Tumer NE (1997) Reduced toxicity and broad spectrum resistance to viral and fungal infection in transgenic plants expressing pokeweed antiviral protein II. Virology 236 (1), 76-84
