Simultaneous Estimation of Aspirin, Atorvastatin and Clopidogrel in Combined Capsule Dosage Form Using Reverse Phase High-Performance Liquid Chromatography

Nitin Dubey* • Manju Patel • Dinesh K. Jain

College of Pharmacy, IPS Academy, Rajendra Nagar A.B. Road, Indore [Madhya Pradesh], India

Corresponding author: * nitindubeympharm@yahoo.com

ABSTRACT

Simple, accurate and precise reversed phase high-performance liquid chromatographic (RP-HPLC) methods for simultaneous estimation of aspirin (ASP), atorvastatin (ATO) and clopidogrel (CLO) in combined capsule dosage form have been developed and validated. The RP-HPLC method uses a Shimadzu LC 10 ATVP system with a Luna C18 column and acetonitrile: methanol: water (pH adjusted with ortho phosphoric acid) at pH 3.5 (50: 30: 20, v/v/v) as the mobile phase. The detection was carried out using a diode array detector set at 250 nm. Linearity of chromatographic method was found in the concentration range of 5-100, 2-24 and 5-100 μg/mL in methanol at 238, 247 and 220 nm for ASP, ATO and CLO respectively. The recoveries were in the range of 101.25 ± 0.60 for ASP, 100.34 ± 0.62 for ATO and 100.36 ± 0.60 for CLO using HPLC. These methods may be used for routine analysis of the drugs in a pharmaceutical formulation. Results of analysis were statistically validated.

Keywords: RP-HPLC, validation

Abbreviations: ASP, aspirin; ATO, atorvastatin; CLO, clopidogrel; RP-HPLC, reversed phase high performance liquid chromatography

INTRODUCTION

ASP is chemically known as 2-acetoxycbenzoic acid. Aspirin also known as acetylsalicylic acid, and belongs to the class of compounds known as is a salicylate drug and also having analgesic, antipyretic action and anti-inflammatory medication. It is official in Indian Pharmacopoeia, British Pharmacopoeia and United States Pharmacopoeia (Anonymous 1998, 2004, 2007). The analgesic action is mainly due to obtunding of peripheral pain receptor and prevention of PG (prostaglanding). Aspirin also has an antiplatelet effect by inhibiting the production of thromboxane, which under normal circumstances binds platelet molecules together to create a patch over damage of the walls within blood vessels (Panchal et al. 2009; Patel et al. 2009).

Atorvastatin is chemically known as (3R,5R)-7-[2-(4-fluorophenyl)-3-phenyl-4-(phenylcarbamoyl)-5-(propan-2-yl)-1H-pyrrol-1-yl]-3,5-dihydroxyheptanoic acid.

Atorvastatin is a member of drug class known as statins. It is official in Indian Pharmacopoeia (2007). Atorvastatin is a HMG-CoA (3-hydroxy-3-methyl-glutaryl-CoA) reductase inhibitor (Gupta et al. 2009; Hirave et al. 2010; Kolare et al. 2010).

Clopidogrel is chemically known as (+)-(S)-methyl 2-(2-chlorophenyl)-2-(6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl)acetate. Clopidogrel is an oral antiplatelet agent thienopyridine class. Clopidogrel acts as an antithrombotic drug, which alters ther surface receptor on platelets and inhibits ADP (Adenosine diphosphate) as well as fibrinogen-induced platelets aggregation (Sabur et al 2008; Renapurkar et al. 2010). Chemical structures of ASP, ATO and CLO are shown in Fig. 1.

A literature survey revealed that several analytical methods have been reported for the determination of ASP in pure and dosage forms in the official Indian Pharmacopoeia (Anonymous 1996, 2007) and apart from Pharmacopeias, several analytical methods have been used to analyze human plasma and urine (Buskin et al. 1982; Kees et al. 1996).

HPLC for determination of ATO from capsule formulation is official in Indian Pharmacopoeia (2007). Several analytical methods that have been reported for the determination of ATO in biological fluids and in bulk as well as pharmaceutical formulations include HPLC, UV absorption spectrophotometry (Bahramia et al. 2005; Sonawane et al. 2006; Stanisz et al. 2006; Stanisz et al. 2006; Hirave et al. 2010).

This paper describes simple, accurate, precise, and sensitive reversed-phase (RP)-HPLC methods for simultaneous determination of ASP, ATO and CLO in a combined capsule dosage form. The proposed methods were optimized and validated according to International Conference on Harmonization (ICH) guidelines (ICH Harmonized Tripartite Guideline 2005; Mandhanya et al. 2011).
Whatman #41 filter paper. After that 10 ml of the above solution was transferred to 100 ml of volumetric flask through a metric flask and dissolved with mobile phase. The supernatant respective quantity of ATO and CLO was placed in a 50 ml volumetric flask, made up to the mark with the mobile phase. Each solution was diluted up to 100 ml with mobile phase. The sample solution was injected, and the peak areas were recorded. A representative chromatogram is given in Fig. 2.

From the peak area the drugs concentration of each drug/capsule was estimated from the respective calibration curves (Steward et al. 2000; Jalalizadeh et al. 2006; Qutab et al. 2007).

(d) Recovery studies: Accuracy of the method was analyzed by recovery studies carried out by addition of standard drug solution to pre-analyzed sample at 3 different levels: 80, 100, and 120% of the target concentration (ICH guidelines).

(e) Precision: Precision of the method was checked by 3 replicate readings at 3 concentration levels of within range expressed as RSD values.

Statistical analysis

Means, standard deviation (SD), relative standard deviation (RSD), and linear regression analyses were calculated using Microsoft Excel 2003.

RESULTS AND DISCUSSION

For the RP-HPLC method, chromatographic conditions were optimized to achieve the best resolution and peak shape for ASP, ATO and CLO. Different mobile phases containing methanol, acetonitrile and water were examined (data not shown), and the mobile phase methanol: acetonitrile: water (pH adjusted with ortho phosphoric acid) (50: 30; 20, v/v/v) was selected as optimal for obtaining well-defined and resolved peaks. The optimum wavelength for detection and quantitation was 250 nm, at which the best detector response for these substances was obtained. Linear calibration curves were obtained for ASP, ATO and CLO in the RP-HPLC methods. Table 1 summarizes the linearity, precision, standard deviations (SD), limit of detection (LOD) and limit of quantitation (LOQ) values for methods. System suitability parameters for the RP-HPLC method are listed in Table 2.

Although chromatographic methods (Buskin et al. 1982; Kees et al. 1996; Anonymous 1998, 2004, 2007) have been reported for analysis of ASP, ATO and CLO in bulk drug, biological fluid and urine but no method has been reported for the analysis of ASP, ATO and CLO. The method reported analyzes all three compounds with accuracy (≤ RSD ± 2%) in combination in the bulk formulations as well as in combined dosage form without prior separation.

The proposed methods were also evaluated in the assay of commercially available capsule containing ASP, ATO and CLO. Six replicate determinations were performed on the accurately weighed amounts of capsule. For ASP, ATO and CLO recovery (mean, %, ± SD, n = 3) was found to 101.25 ± 0.60, 100.34 ± 0.62 and 100.36 ± 0.60%, respectively (Table 3).

![Fig. 2 Chromatogram of ASP, ATO and CLO in capsule dosage form.](image)

Materials and Methods

Drugs and chemicals

Acetonitrile (HPLC grade) and methanol (HPLC grade) were purchased from Merck (Mumbai, India) and water (HPLC grade) was prepared in the institute. All other reagents used were of analytical grade. Standard bulk drug samples of ASP (98.92% pure), ATO (99.81% pure) and CLO (99% pure) were provided by Ipcac laboratories Ltd. (Ratlam, India) as gratis samples. The pharmaceutical dosage form used in this study was Deplatt-CV labeled to containing ASP 75 mg, ATO 10 mg and CLO 75 mg/capsule (Suren Pharmaceutical, Villianur, Commune Punnuchery India) were purchased from the local market.

Instrumental

The HPLC method, an HPLC system consisting of an LC 10 ATVP pump equipped with a diode array detector (Shimadzu, Japan) and a Luna C18 (4.6 mm id) column and class M10A software version 1.6 was used. A Rheodyne (Rohnert Park) injector with 20 μL loop was used for injecting the sample.

Method: RP-HPLC method

In the RP-HPLC method, separation and analysis of ASP, ATO and CLO were carried out on a Luna C18 column (4.6 mm id) with the diode array detector set at 250 nm. Mobile phase consisting of methanol: acetonitrile: water (pH adjusted with ortho phosphoric acid) (50: 30; 20, v/v/v) filtered through a 0.2 μm membrane filter, degassed and sonicated) was used at flow rate of 1.0 mL/min.

(a) Standard stock solutions: Standard stock solutions containing 100 μg/mL ASP, 100 μg/mL ATO and 100 μg/mL CLO were prepared by dissolving the pure drugs separately in the mobile phase (Steward et al 2000; Jalalizadeh et al 2006; Qutab et al 2007).

(b) Preparation of the calibration curves: Aliquots of 5, 10, 15, 20, 25 and 30 μL stock solution of ASP and 2, 4, 6, 8, 10 and 12 μL stock solution of ATO and 5, 10, 15, 20, 25 and 30 were transferred into a series of 10 mL volumetric flasks and the volume was made up to the mark with the mobile phase. Each solution was injected, and chromatogram was recorded. Mean retention times were optimized to achieve the best resolution and peak shape for ASP, ATO and CLO. Different mobile phases were optimized to achieve the best resolution and peak shape for ASP, ATO and CLO. Different mobile phases were selected as optimal for obtaining well-defined and resolved peaks. The optimum wavelength for detection and quantitation was 250 nm, at which the best detector response for these substances was obtained. Linear calibration curves were obtained for ASP, ATO and CLO in the RP-HPLC methods. Table 1 summarizes the linearity, precision, standard deviations (SD), limit of detection (LOD) and limit of quantitation (LOQ) values for methods.

System suitability parameters for RP-HPLC method

The proposed methods were also evaluated in the assay of commercially available capsule containing ASP, ATO and CLO. Six replicate determinations were performed on the accurately weighed amounts of capsule. For ASP, ATO and CLO recovery (mean, ± SD, n = 3) was found to 101.25 ± 0.60, 100.34 ± 0.62 and 100.36 ± 0.60%, respectively (Table 3).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Method</th>
<th>ASP</th>
<th>ATO</th>
<th>CLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1443</td>
<td>1502</td>
<td>5279</td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>3061</td>
<td>1195</td>
<td>1252</td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>5988.04</td>
<td>5968.12</td>
<td>8860.32</td>
<td></td>
</tr>
<tr>
<td>Detection limit, μg/mL</td>
<td>3.22</td>
<td>0.82</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>Quantitation limit, μg/mL</td>
<td>2.1</td>
<td>1.1</td>
<td>2.3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Method</th>
<th>ASP</th>
<th>ATO</th>
<th>CLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration range, μg/mL</td>
<td>5-100</td>
<td>2-24</td>
<td>5-100</td>
<td></td>
</tr>
<tr>
<td>Theoretical plate number</td>
<td>4747</td>
<td>4983</td>
<td>5231</td>
<td></td>
</tr>
<tr>
<td>HETP</td>
<td>0.0032</td>
<td>0.0030</td>
<td>0.0028</td>
<td></td>
</tr>
<tr>
<td>Tailing factor</td>
<td>1.25</td>
<td>1.07</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>Capacity factor (k’)</td>
<td>0</td>
<td>2.29</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>6.73</td>
<td>13.68</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 Regression analysis of calibration curves of method.

Table 2 System suitability parameters for RP-HPLC method.
Table 3 Recovery studies.

<table>
<thead>
<tr>
<th>%</th>
<th>Drug</th>
<th>Mean</th>
<th>RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>ASP</td>
<td>101.46</td>
<td>0.0035</td>
</tr>
<tr>
<td></td>
<td>ATO</td>
<td>100.30</td>
<td>0.0093</td>
</tr>
<tr>
<td></td>
<td>CLO</td>
<td>100.31</td>
<td>0.0053</td>
</tr>
<tr>
<td>100</td>
<td>ASP</td>
<td>100.94</td>
<td>0.0035</td>
</tr>
<tr>
<td></td>
<td>ATO</td>
<td>100.41</td>
<td>0.0093</td>
</tr>
<tr>
<td></td>
<td>CLO</td>
<td>100.39</td>
<td>0.0053</td>
</tr>
<tr>
<td>120</td>
<td>ASP</td>
<td>101.36</td>
<td>0.0035</td>
</tr>
<tr>
<td></td>
<td>ATO</td>
<td>100.33</td>
<td>0.0093</td>
</tr>
<tr>
<td></td>
<td>CLO</td>
<td>100.37</td>
<td>0.0053</td>
</tr>
</tbody>
</table>

CONCLUSIONS

The validated RP-HPLC method developed here proved to be simple, fast, accurate, precise and sensitive. Thus, they may be used for routine analysis of ASP, ATO and CLO in combined capsule dosage form without prior separation.

ACKNOWLEDGEMENTS

The authors wish to express their gratitude to Ipca Lab., Ratlam, India, for providing gratis samples of pure ASP, ATO and CLO.

REFERENCES

Qutab SS, Razzaq SN, Khan IU, Ashfaq M, Shuja ZA (2007) Simultaneous determination of atorvastatin calcium and ezetimibe in pharmaceutical formulations by liquid chromatography. Journal of Food and Drug Analysis 15, 139-144

Shehni PD (2001) Quantitative Analysis of Pharmaceutical Formulations (1st Edn), CBS Publication and Distributors, New Delhi, pp 1-17

Sharma BK (2005) Instrumental Methods of Chemical Analysis (24th Edn), Good Publishing House, Meerut, C-286-C-311