Variability in Morpho-Physiological and Nitrogen-Fixing Traits of Ethiopian Fenugreek (Trigonella foenum-graecum L.) Landraces

Million Fikreselassie1* • Nigussie Alemayehu2 • Habtamu Zeleke1

1 School of Plant Sciences, Haramaya University, P. O. Box 252, Dite Dawa, Ethiopia
2 Agriculture and Natural Resource Advisor, FAO, Addis Ababa, Ethiopia

ABSTRACT

The extent and pattern of genetic variability present in a population of fenugreek a given crop is indisputably essential for further improvement. A field experiment was conducted at Ambo and Adadi during the main cropping season to assess the extent and pattern of genetic diversity of morpho-physiological and nitrogen fixation traits in which 143 random samples of fenugreek accessions along with a commercial variety ‘Challa’ were arranged in a 12 × 12 simple lattice design. Mean squares due to genotypes were highly significant for genetic diversity of morpho-physiological and nitrogen fixation traits in which 143 random samples of fenugreek accessions along with a commercial variety ‘Challa’ were arranged in a 12 × 12 simple lattice design. Mean squares due to genotypes were highly significant for all traits studied, except for days to maturity (DM), grain-filling period (GFP) and number of secondary branches per plant which were significant indicating the presence of genetic variability for these traits in fenugreek germplasm accessions. The range of GCV observed ranged between 3.02 and 68.95% while genotypic variance ranged between 0.001 and 28.62%. Broad sense heritability was 48.63% for DM and 2.92% for GFP. Genetic gains varied between 0.20% and 28.22%. Five of the ten PCAs accounted for more than 78.10% of the total variation. The average linkage technique of clustering produced a more understandable portrayal of the 144 fenugreek accessions by grouping them into five clusters and the maximum distance was found between clusters two and five (D² = 64.07). The study generally indicated the possibility for genetic improvement of fenugreek through selection and cross breeding.

Keywords: crude protein, cluster, heritability, nodulation, principal component

INTRODUCTION

Fenugreek (Trigonella foenum-graecum L.) is a diploid with eight pairs of chromosomes (2n = 16) (Raghuvanshi and Singh 1977) which is well known as traditional medicine for diabetes, indigestion, elevation of lipids and edema (fluid retention) of the legs (Ruveyd 2011). Undoubtedly, as one of the oldest cultivated plants, fenugreek is widely grown today in the Mediterranean countries, Argentina, France, India, North Africa, and the United States for food, condiment, medicine, dye, and forage purposes (Simon et al. 1984). In addition to the above mentioned countries, fenugreek is an important field crop also in Ethiopia, Egypt, India and Turkey (Beyene 1965; Westphal 1974).

Fenugreek is a good soil renovator and widely used as a green manure (Abdelgani et al. 1999). An experiment conducted in Russia (Provorov et al. 1996) showed that fenugreek used in cotton as a green manure increased number of bolls per plant (Hugh and Hailu 1963). It is a host for more than twelve strains of Rhizobium species that are effective in the process of biological N-fixation unlike most other legumes with strain-specific character efficiency of fixing nitrogen. Similarly Egrove et al. (1982) concluded that ploughing-in fenugreek has significantly increased four-year average fodder yield of maize and three-year average yield of the following spring wheat. The authors also found that when fenugreek was used as bio-fertilizer, the increase of shoot and root dry matter of maize was remarkable.

Fenugreek has a high proportion of protein as well as amino acid, 4-hydroxyisoleucine, which has high potential for insulin stimulating activity. The fenugreek seed is quite rich in protein content in comparison with cereal grain and other legume seeds (Petropoulos 1973; Awadala et al. 1980; Ullah 1982). The increasing protein deficiency all over the world, justifies every effort made for the genetic improvement of fenugreek in this direction. Petropoulos (1973) reported genetic variability for protein content among a collection of 123 hybrid lines of fenugreek ranging from 20.4 to 39.3% and Duke (1986) found an average of 32.2%. Hidvergi et al. (1984) reported a protein content of 26.4%. Feysal (2006) reported seed protein content, from 36 Ethiopian fenugreek landraces which ranged from 24.94 to 37.54%.

Knowledge of the extent and pattern of variability particularly of genetic variability present in a population of a given crop is indisputably essential for further improvement. Therefore, in order to best exploit the available genetic wealth, unraveling the information on the extent and nature of genetic diversity of the population would help in formulating efficient scheme of selection based on the traits of importance. However, only little of such vital information on fenugreek landraces is present under Ethiopian conditions. Therefore, the objective of this study was to assess the extent and pattern of genetic diversity for morpho-physiological and nitrogen fixation traits.

MATERIALS AND METHODS

Experimental location and layout

The field experiment was conducted at Ambo and Adadi during 2007 main cropping season. Ambo has an altitude of 2300 m.a.s.l. and average annual rainfall of 1000 mm, while Adadi has an altitude of 2050 m.a.s.l. and average annual rainfall of 900 mm. The soil at Ambo is characterized as a vertisol with a pH of 6.1 while that of Adadi is light vertisol with a pH of 7.5.

Fenugreek accessions (143 samples) along with one commercial variety ‘Challa’ were considered in this study. Treatments

Received: 17 November, 2012. Accepted: 28 November, 2012.
were arranged in a 12 × 12 simple lattice design and seeding was
done in a plot of four rows with 2 m length and spacing of 10 cm
between plants and 25 cm between rows. The layout and ran-
domization were as per the standard procedure set by Cochran and
Cox (1957).

Collection of data
The following traits were collected on whole plot or on a plant
basis as:
- Days to maturity (DM): Recorded as the number of days from the
date of sowing to the date at which 90% of the pods reached
the stage of physiological maturity.
- Seed protein content (CP): Seed samples from each randomly
selected 50 plots were oven-dried to constant moisture, ground
to pass through a 2-mm size mesh sieve for determination of nitrogen
content at Holetta Research Center using the Kjeldahl technique.
- Grain protein contents were estimated using the standard conversion factor
of N in the dried seed samples by the standard method of
AOAC 1970. The results obtained from these fifty sample
plots were used for calibration and validation of Near Infrared
Reflectance Spectroscopy (NIRS), which is also available at
Holetta Research Center. Thus the remaining experimental
material was analyzed by taking 3 g of intact seeds of each plot and
scanned by a monochromator model 6500 (NIR Systems, Mary-
land, USA).
- Number of nodes per plant (NPPL): This was determined as
an average number of nodes from the ten sample plants.
- Number of nodules per plant (PNPPL): This was determined as
an average number of nodes that bear pod from the
ten sample plants.
- Number of primary branches per plant (PBR): The total num-
ber of primary branches which gave rise to other seed-bearing
branches of higher order or born seeds themselves was determined
as an average number of productive primary branches from the ten
sample plants. Counting was done at the time when flowering was
completely over and pods were still green but old enough to judge
that they would give seeds.
- Number of secondary branches per plant (SBR): The average
number of secondary or any other order productive produc-
tive branches of the same plants used to determine the number of primary
branches.
- Number of nodules/plant (NL): The average number of nod-
ules obtained from the five sample plants. The results were scored
using a 0-4 scale, where 0 = no nodules, 1 = 1 to 10 nodules/plant;
2 = 11 to 20 nodules/plant; 3 = 21 to 30 nodules/plant and 4 = 30
nodules/plant.
- Fresh weight of nodules/plant (FWNL): The average weight
in gram per plant of the fresh nodules obtained from the plants
used to determine number of nodules per plant.
- Number of effective nodules/plant (ENL): The number of
effective nodules was visually identified at the time of flowering
from the same plants used to determine number of nodules per
plant and fresh weight of nodules per plant. The effective nodules
were differentiated from ineffective ones by their color whereby
the depressions; red- or brown-colored nodules, which reflect high leg
hemoglobin content, were designated as effective, while all
others were designated as non-effective nodules (Carter 1995).

Data analysis
The traits were subjected to analyses of variance (ANOVA) and
combined analysis of variance over locations for simple lattice
design was performed using the SAS software (SAS 1996).
- For the sake of covariance to estimate the expected mean
square the analyses of variances in this investigation were conduc-
ted using RCBD as per the standard procedure set by Cochran and
Cox (1957) and Gomez and Gomez (1984).
- The total variability for the traits was quantified using pooled
analyses of variance over locations using the following model:

\[P_{aik} = \mu + l_i + r_{i0} + b_{j(i0)} + g_k + (g_l)_{kt} + e_{itjk} \]

where \(P_{aik} \) = the phenotypic value in the \(a \)th replication, \(i \)th location,
\(j \)th incomplete block within replication \(i \) and location \(t \) and from the
\(k \)th accession, \(\mu \) = the grand mean, \(l \) = the effect of location \(t \),
\(r_{i0} \) = the effect of replicate \(i \) within location \(t \), \(b_{j(i0)} \) = the effect of the
incomplete block \(j \) within replication \(i \) and location \(t \), \(g_k \) = the effect of the
\(k \)th accession, \((g_l)_{kt} \) = the effect of interaction of the
\(k \)th accession and the \(t \)th location and \(e_{itjk} \) = the residual.

RESULTS AND DISCUSSION

Analysis of variance
Analysis of variance for the traits studied under both loca-
tions is given in Table 1. It revealed from the results that
mean squares due to locations were highly significant for all
traits, except for PBR and SBR that were significant
and non-significant, respectively. Mean squares due to geno-
types were highly significant for all the traits studied,
except for DM, GFP, and SBR which were significant, but
non significant for FWNL revealed the presence of varia-
bility for these traits in fenugreek germplasm accessions
investigated. All, except DM, PBR and SBR that exhibited
non-significant effects, mean squares due to the interactions
between locations and genotypes were highly significant.
- The result confirmed that the Ethiopian fenugreek landraces
evaluated in this study showed significant phenotypic varia-
tion in terms of phenology, yield component and protein
content. These results are similar with the findings of other
scholars like Banya (1973), Cornish et al. (1983), Provorov
et al. (1996), Fysal (2006), McCormick (2009) and Fikre-
selassie et al. (2012), whose findings are highlighted in
Table 2.

In general, the accessions showed shorter days to matu-
rity and grain filling periods thus may be suitable to low
rainfall regions whereas the late types can be adapted to the
highland areas with dependable rainfall. Thus, the varia-
bility that has been exhibited by these accessions can offer
great opportunity for the development of suitable varieties
for the various agro-ecological zones of Ethiopia as well as
other continents of the world.

Estimation of genotypic and phenotypic variations
High genotypic coefficient of variation (68.95%) was ob-
served for the trait SBR followed by ENL (43.72%) and NL
Variability among Ethiopian Fenugreek (Trigonella foenum-graecum L.) landraces. Million et al.

Table 1 Analysis of variance for 10 traits of T. foenum-graecum L landraces tested in 2007 over two locations (Adadi and Ambo).

<table>
<thead>
<tr>
<th>Traits</th>
<th>MSL(1)*</th>
<th>MSR(1)</th>
<th>MSB(22)</th>
<th>MSG(143)</th>
<th>MSLG(143)</th>
<th>MSE</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFP</td>
<td>4.344**</td>
<td>0.185**</td>
<td>0.130**</td>
<td>0.063**</td>
<td>0.066**</td>
<td>0.044</td>
<td>2.40</td>
</tr>
<tr>
<td>NPPL</td>
<td>17.488**</td>
<td>11.630**</td>
<td>0.592**</td>
<td>0.672**</td>
<td>0.762**</td>
<td>0.454</td>
<td>13.34</td>
</tr>
<tr>
<td>PNPPPL</td>
<td>45.699**</td>
<td>4.624**</td>
<td>0.623**</td>
<td>0.569**</td>
<td>0.685**</td>
<td>0.352</td>
<td>18.65</td>
</tr>
<tr>
<td>PBR</td>
<td>0.212**</td>
<td>3.331**</td>
<td>0.080**</td>
<td>0.260**</td>
<td>0.324**</td>
<td>0.232</td>
<td>15.04</td>
</tr>
<tr>
<td>SBR</td>
<td>0.015**</td>
<td>0.240**</td>
<td>1.039**</td>
<td>1.922**</td>
<td>3.50**</td>
<td>0.666</td>
<td>23.77</td>
</tr>
<tr>
<td>NL</td>
<td>36.544**</td>
<td>4.958**</td>
<td>0.314**</td>
<td>0.412**</td>
<td>0.453**</td>
<td>0.198</td>
<td>28.74</td>
</tr>
<tr>
<td>ENL</td>
<td>11.301**</td>
<td>0.322**</td>
<td>0.007**</td>
<td>0.006**</td>
<td>0.008**</td>
<td>0.006</td>
<td>20.87</td>
</tr>
<tr>
<td>FWNL</td>
<td>0.111**</td>
<td>0.067**</td>
<td>0.006**</td>
<td>0.006**</td>
<td>0.008**</td>
<td>0.006</td>
<td>20.87</td>
</tr>
<tr>
<td>CP%</td>
<td>26.518**</td>
<td>74.570**</td>
<td>1.206**</td>
<td>3.141**</td>
<td>3.845**</td>
<td>1.128</td>
<td>3.46</td>
</tr>
</tbody>
</table>

*, ** Significant at 0.05 and 0.01 probability level respectively and a non-significant
MSL = Mean Square due to location, MSR = Mean Square due to replication, MSB = Mean Square due to blocks, MSG = Mean Square due to genotypes, MSLG = Mean Square due to the interaction between location and genotypes, MSE = Mean Square due to error, CV% = Coefficient of variation in percentage.

Likewise, phenotypic coefficient of variation was high for SBR (12.94%) followed by ENL (9.62%) and NL (8.62%) in general. In general, the environmental variance was greater than the genetic variance for all the traits.

The estimated values of phenotypic variances were in the range of 0.004 for FWNL to 114.49 for NPPL (Table 3). The lowest and highest genetic variances were found for FWNL (0.001) and NPPL (28.62) per plant, respectively.

The results depicted in Table 3 showed that estimates of heritability in broad sense were moderate for DM (48.63%), PBR (35.97%) and NPPL (30.81%). However, low values of heritability were estimated for GFP (2.92%), ENL and NL (4.32 and 7.07%, respectively), FWNL (8.10%), CP content of the seed (12.94%), PNPPPL (14.74%) and SBR (17.38%), indicating limited possibility of improvement for those characters through selection.

In earlier studies, high heritability estimates for days to maturity, number of primary branches and protein content (Feysonal 2006) were reported (Table 4). The probable cause of discrepancy between the present investigations with that of the previous are might be due to the masking effect of environments over the genetic components since the experiment conducted over two locations.

Estimation of expected genetic advance

Genetic gains that expected from selecting the top 5% of the genotypes, as a percent of the mean, varied from 0.20% (PNPPLt) to 28.49% (NPPL) per plant.

Table 2 Assessing variability of different traits among Trigonella foenum-graecum L. from different work done

<table>
<thead>
<tr>
<th>Reference</th>
<th>Investigated trait(s)</th>
<th>Result</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cornish et al. 1983</td>
<td>Cotyledon size, leaf size, plant growth habit</td>
<td>Significant segregation in cross indicating genetic distances</td>
<td>Shows viability</td>
</tr>
<tr>
<td>Feysal et al. 2006</td>
<td>Days to flowering and maturity, plant height, number of primary and secondary branches, pod length, number of pods and seeds per plant, seed yield, biomass yield, thousand seed weight, protein content of the seed</td>
<td>Significant for all traits except harvest index</td>
<td>Shows viability</td>
</tr>
<tr>
<td>McCormick et al. 2009</td>
<td>Cotyledon size, leaf size, plant growth habit, nodulation, plant height, seed color, biomass, seed yield per plant, harvest index and yield components</td>
<td>Significant difference in 204 different fenugreek collections across the world</td>
<td>Shows viability</td>
</tr>
<tr>
<td>FikreSelassie et al. 2012</td>
<td>Days to flowering, plot uniformity, thousand seed weight, number of pods per plant, plant height, number of seeds per plant, number of seeds per pod, seed color, seed shape, seed yield, biomass yield, harvest index</td>
<td>Significant for all traits except harvest index</td>
<td>Shows viability</td>
</tr>
</tbody>
</table>

Table 3 Estimates of minimum, mean and maximum value, variance and coefficient of variation at phenotypic (σ_p^2), genotypic (σ_g^2) level, heritability in broad sense (h²%), genetic advance in absolute (GA) and percent of mean (GAM) for 10 traits of T. foenum-graecum L.

<table>
<thead>
<tr>
<th>Traits</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
<th>σ_p^2</th>
<th>σ_g^2</th>
<th>GCV%</th>
<th>PCV%</th>
<th>h²%</th>
<th>GA</th>
<th>GAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>123.80</td>
<td>129.71</td>
<td>135.38</td>
<td>18.318</td>
<td>4.564</td>
<td>1.65</td>
<td>3.30</td>
<td>48.63</td>
<td>2.14</td>
<td>1.65</td>
</tr>
<tr>
<td>GFP</td>
<td>69.73</td>
<td>75.64</td>
<td>81.58</td>
<td>24.800</td>
<td>6.220</td>
<td>3.30</td>
<td>5.68</td>
<td>2.92</td>
<td>0.15</td>
<td>0.20</td>
</tr>
<tr>
<td>NPPL</td>
<td>16.95</td>
<td>29.90</td>
<td>44.88</td>
<td>114.490</td>
<td>28.623</td>
<td>17.89</td>
<td>35.79</td>
<td>30.81</td>
<td>3.40</td>
<td>11.37</td>
</tr>
<tr>
<td>PNPPPL</td>
<td>3.86</td>
<td>10.31</td>
<td>19.48</td>
<td>34.106</td>
<td>8.547</td>
<td>28.36</td>
<td>56.64</td>
<td>14.74</td>
<td>0.89</td>
<td>8.62</td>
</tr>
<tr>
<td>PBR</td>
<td>1.47</td>
<td>3.16</td>
<td>4.14</td>
<td>4.339</td>
<td>18.444</td>
<td>26.18</td>
<td>36.71</td>
<td>39.57</td>
<td>0.43</td>
<td>13.68</td>
</tr>
<tr>
<td>SBR</td>
<td>0.00</td>
<td>0.62</td>
<td>2.92</td>
<td>0.086</td>
<td>68.95</td>
<td>159.66</td>
<td>17.38</td>
<td>0.17</td>
<td>28.22</td>
<td></td>
</tr>
<tr>
<td>NL</td>
<td>3.39</td>
<td>12.69</td>
<td>27.17</td>
<td>73.616</td>
<td>18.376</td>
<td>33.78</td>
<td>67.61</td>
<td>7.07</td>
<td>0.63</td>
<td>4.93</td>
</tr>
<tr>
<td>ENL</td>
<td>0.39</td>
<td>2.53</td>
<td>4.22</td>
<td>4.928</td>
<td>12.244</td>
<td>43.72</td>
<td>87.75</td>
<td>4.32</td>
<td>0.10</td>
<td>3.89</td>
</tr>
<tr>
<td>FWNL</td>
<td>0.00</td>
<td>0.13</td>
<td>0.24</td>
<td>0.004</td>
<td>0.004</td>
<td>24.92</td>
<td>46.15</td>
<td>8.10</td>
<td>0.01</td>
<td>4.16</td>
</tr>
<tr>
<td>CP%</td>
<td>28.70</td>
<td>30.65</td>
<td>33.66</td>
<td>3.460</td>
<td>0.858</td>
<td>3.02</td>
<td>6.07</td>
<td>12.94</td>
<td>0.25</td>
<td>0.81</td>
</tr>
</tbody>
</table>

Min, Mn and Max stands for minimum, mean and maximum value and DM = Days to 90% maturity, GFP = Grain filling period, NPPL = Number of nodes per plant, PNPPPL = Number of podding nodes per plant, PBR = Number of primary branches per plant, SBR = Number of secondary branches per plant, NL = Number of nodules per plant, ENL = Number of effective nodules per plant, FWNL = Fresh weight of nodules in g per plant, CP = Crude protein of the seed in percentage.
for GFP to 28.22% for SBR, indicating an increase and/or improving with the magnitude of 0.20% to 28.22% can be made by selection based on these traits under similar conditions to this study. The low values of expected genetic advance for the traits like DM in spite of moderate (48%) heritability is due to low variability for the trait indicated by the low GCV and PCV values. This indicates the importance of genetic variability in improvement through selection. This result is also in conformation with that of Feyesal (2006).

As observed in the present investigation, the low expected genetic advance for PBR and SBR, CP content and all nitrogen-fixing traits (NK, ENL and FWNL) were due to low variability existed for the traits.

Principal component analysis

In order to assess the pattern of variations as worked by Elfalleh et al. (2009) and Zandi et al. (2011), principal component analysis (PCA) was done by considering all the ten variables simultaneously. Five of the ten principal components (PCs) accounted for more than 78% of the total variation in the Ethiopian fenugreek landraces (Table 5).

The first PC accounted for 29.69% of the total variation and seven of the ten traits considered in this study exerted positive effects on this component, while the rest traits exerted negative effects of different magnitudes. Among those traits having positive and greater influence includes, number of podding nod, total nod and secondary branches per plant. Conversely, N-fixing traits (NL, ENL and FWNL) had all negative weights on this component. The second component accounted for an additional 16.70% of the total variation. All of the traits exerted positive but different magnitude and the N-fixing traits (NL, ENL and FWNL) were among the traits which have positive and maximum impacts on the second component. The third PC accounted for about 13.95% of the total variation and except temporal traits (DM and GFP), all traits exerted negatively in this component. CP content of the seed exerted high but negative influence on the fourth component and inversely, it exerted high and positive effect on the fifth component.

Clustering of genotypes and divergence analysis

Genetic diversity plays an important role in plant breeding since hybrids between lines of diverse origin generally display a greater heterosis than those between closely related lines (Wels, 1995).

The average linkage technique of clustering produced a more understandable portrayal of the 144 fenugreek accessions by grouping them into five clusters, whereby different members within a cluster being assumed to be more closely related in terms of the ten trait under consideration with each other than those members in different clusters (Gemechu et al. 2005a; 2005b; Nigussie and Becker 2002). Similarly, members in clusters with non-significant distance were assumed to have more close relationship with each other than they are with those in significantly distant clusters. Table 6 indicates the range, mean, standard deviation and coefficient of variation in some morphological and N-fixing traits of the five clusters and Fig. 1 shows trends of each cluster on each of the ten traits. The detail account of the characteristics of each cluster is presented hereunder.

Cluster I: consisted of 94 landraces collected from the entire regions of the country and required longer period for grain filling and bears larger NPPL indicating accessions takes longer time for maturity after flowering which might be suited for the areas with prolonged rainfall.

Cluster II: consisted of 29 landraces, which exhibited early in DM and GFP. The major contributing factors that cause differentiation of this cluster from the rest of the clusters were nitrogen fixing traits (Table 5) which also confirmed from the standard deviations of the traits in the cluster as compared with the other traits (Table 6).

Cluster III: consisted of 14 landraces which required longer phonological traits but they exhibited lower in nitrogen fixing traits. The major contributing traits that cause differentiation of this cluster from the rests of the clusters were such phonological traits as days to maturity and grain filling period.

Cluster IV: had 5 landraces which superior in all nitrogen fixing traits and protein content of the seed. Among the other traits, CP is the most negatively contributing traits that create variability of this cluster from the rest.

Cluster V: consisted of 2 landraces, which were relatively superior in most morpho-physiological traits. Among the other traits, as of cluster IV, CP and ENL are the most contributing traits that create variability of this cluster from the rest (Table 6).

In general, the differences between the clusters were mainly attributed to the variation in DM. Other traits such as, NPPL, the N-fixing traits (NL, ENL and FWNL) and CP content of the seed have contributed equally well for cluster constellations. These traits were also the major contributors to the PC one and two. From the estimated distance analysis, out of ten possible pairs of clusters, differences between six pairs were highly significant ($P < 0.01$) while those between the rest (four pairs) of clusters were non-significant (Table 7).

The maximum distance was found between cluster two and five ($D^* = 64.07$). Cluster two constitutes twenty nine while cluster five constitutes two accessions. The second most divergent clusters were cluster two and three ($D^* = 37.17$). Cluster three constitutes fourteen accessions and the third most divergent clusters were cluster three and four ($D^* = 31.54$). Cluster four constitutes five accessions. The forth

Table 5 The eigen values and vectors of the correlation matrix for 10 traits of 144 *Trigonella foenum-graecum* landraces.

<table>
<thead>
<tr>
<th>Character</th>
<th>PRIN1</th>
<th>PRIN2</th>
<th>PRIN3</th>
<th>PRIN4</th>
<th>PRIN5</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>3.27</td>
<td>1.84</td>
<td>1.53</td>
<td>1.05</td>
<td>0.91</td>
</tr>
<tr>
<td>% variance</td>
<td>29.69</td>
<td>16.70</td>
<td>13.95</td>
<td>9.52</td>
<td>8.24</td>
</tr>
<tr>
<td>Cumulative</td>
<td>29.69</td>
<td>46.39</td>
<td>60.34</td>
<td>69.86</td>
<td>78.10</td>
</tr>
</tbody>
</table>

Table 6 Trend of the five clusters of the 144 *Trigonella foenum-graecum* L. germplasms over the ten traits. Y-axis scale based upon the units mentioned under the material and methods section for each parameters.

![Image](309x657 to 548x798)
almost divergent clusters were between cluster one and five (DF = 28.38), cluster one was constituted from ninety-four accessions collected from different part of the country.

Genotypes grouped into the same cluster presumably diverge little from one another as the aggregate characters are measured. Generally, maximum genetic segregation and genetic recombination is expected from crosses that involve accessions collected from different part of the country.

Among the five clusters formed, cluster five showed the maximum genetic segregation. In a similar fashion, there were only two accessions from cluster two and five which will give rise to maximum genetic segregation.

It is worthy to note that in calculating cluster mean, the superiority of a particular accession with respect to a given character could get diluted by other accessions that are grouped in the same cluster but are inferior or intermediate for the character in question. Hence apart from selecting genotypes from the clusters which have higher inter-cluster distance for hybridization one can also think of selecting parents based on the extent of divergence with respect to a character of interest.

CONCLUSION

From the results obtained in our work, it can be concluded that there is the presence of variability for most of the traits in Ethiopian fenugreek germplasm accessions and, generally, indicates possibilities for genetic improvement of the crop through selection and cross breeding. The result also reveals that genetic gains estimate an increase and/or improving with the magnitude of 0.2% to 28.2% can be made by selection based on these traits under similar conditions to this study.

ACKNOWLEDGEMENTS

The authors wish to thank all the staff of the Highland Pulse Research Program at Holetta Research Center in general and Dr. Gemedu Keneni and Mr. Musa Jarso in particular for their immense assistance in the research work.

REFERENCES

Banyai L (1973) Botanical and qualitative studies on ecotypes of fenugreek (Trigonella foenum-graecum). Agrobotanika 15, 175-186

Beyene C (1965) Studies on biological evaluation of the protein quality of teff (Eragrostis abyssinica) and abish (Trigonella foenum-graecum L.) and the supplementary value of abish when added to teff. MSc thesis, Faculty of the Graduate School of Cornell University, New York

Egory BV, Khailil SH, Kukurazuka A (1982) Green manures. Field Crops 42,

Feyssal B (2006) Genetic divergence and Association among seed yield, yield related traits and protein content of some fenugreek (Trigonella foenum-graecum L.) landraces. MSc thesis, School of Graduate Studies of Alema University, Ethiopia, 83 pp

Hugh FR, Hailu M (1963) Experimental Station Bulletin no. 20, Imperial Ethiopian College of Agriculture and Mechanical Arts

Mahalanobis PC (1936) On generalized distance in statistics. Proceedings of the National Institute of Science (India) 2, 49-55

Raghuvanshi SS, Singh AK (1977) Polyploid breeding in Trigonella foenum-graecum L. Cytologia 42, 539

Welsh RJ (1990) Fundamentals of Plant Genetics and Breeding, John Wiley and Sons, New York
