Composition, Total Phenolic Content and Antioxidant Activity of the Essential Oil of Four Lamiaceae Herbs

Fatma Abd El-Lateef Gharib1* • Jaime A. Teixeira da Silva2

1Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt
2Faculty of Agriculture and Graduate School of Agriculture, Kagawa University, Miki-cho, Ikenobe 2393, Kagawa-Ken, 761-0795, Japan

Corresponding author: * fgharib_8@yahoo.co.uk

ABSTRACT

The composition of the essential oils of fresh aerial parts of marjoram (Majorana hortensis), peppermint (Mentha piperita), spearmint (Mentha spicata L.) and rosemary (Rosmarinus officinalis L.) herbs were determined by GC-MS. The main identified oils constituents were γ-terpinene (19.77%), sabine hydrate (17.56%), terpinen-4-ol (14.96%), α-terpinene (13.25%) and sabine (12.35%) in M. hortensis; menthone (36.58%) and neo-menthol (40.47%) in M. piperita; carvone (42.84%) and carcel (34.98%) in M. spicata and 1,8-cineol (21.55%), α-pinene (17.77%) and camphor (15.38%) in R. officinalis. The 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay was used to determine the antioxidant activity of the oils while the Folin–Ciocalteu method was used to determine the total phenolic equivalent. Peppermint oil has the highest free radical scavenging activity (IC50 = 59.19 μg mL-1) and the most total phenolics. The lowest radical scavenging activity was exhibited by marjoram oil (IC50 = 65.352 μg mL-1). Moreover, the radical scavenging activity of the four essential oils was much lower than that observed for the synthetic antioxidant TBHQ (IC50 = 29.81 μg mL-1). The four Lamiaceae oils can be potential sources of natural antioxidant agents in particular, peppermint and rosemary oils, which have the highest total phenolic equivalent (0.163, 0.128 mg of gallic acid equivalents per 100 μl essential oil, respectively).

Keywords: GC-MS, Majorana hortensis, Mentha piperita, Mentha spicata, radical-scavenging activity, Rosmarinus officinalis

Abbreviations: BHA, butylated hydroxyanisole; BHT, butylated hydroxytoluene; DPPH, 2,2’-diphenyl-1-picrylhydrazyl; EO, essential oil; GAE, gallic acid equivalent; GC–MS, gas chromatography-mass spectrometry; PG, propyl galate; TBHQ, tertiary butyl hydroquinone

INTRODUCTION

Marjoram (Majorana hortensis), peppermint (Mentha piperita), spearmint (Mentha spicata L.) and rosemary (Rosmarinus officinalis L.) are among the most important members of the Lamiaceae family. Marjoram is used worldwide as a spice and crude drug and possesses high antioxidant and anticancer properties (Rameilah 2009). Mentha is a genus of widely distributed aromatic perennial herbs with considerable economic importance and whose aerial parts are often used as a condiment (Bhat et al. 2002). The essential oils (EOs) of peppermint and spearmint are processed into flavoring for food, medicine, mouthwash and confectionery (Chambers and Hummer 1994). Peppermint EO has anti-cancer activity (Kumar et al. 2004). On the other hand, rosemary is one of the most effective spices widely used in food processing, is well cultivated in Egypt, and is the only spice commercially available for use as an antioxidant in Europe and the United States (Yanishlieva et al. 2006). The antioxidant properties of rosemary are well documented (Okoh et al. 2011; Kadri et al. 2011). Rosemary extract may be a good candidate for functional foods as well as for pharmaceutical plant-based products (Moreno et al. 2006).

The chemical composition of the EOs of Lamiaceae species is very variable and the major components were found to be terpinen-4-ol, gamma-terpinene, α-terpinene, sabine, and trans-sabinene hydrate in marjoram (El-Ghorab et al. 2004; Verma et al. 2010a, 2010b) in addition to β-caryophyllene, terpinolene, absence of sabine hydrate and presence of new compound viridiflorene (Alarmal mangai and Ravi 2012); menthone, menthol, isomenthone, 1,8-cineol and neo-menthol in peppermint (Gupta and Saxena 2010; Yang et al. 2010; Mkolo et al. 2011); carvone, carcel and limonene in M. spicata (El-Keltawi and Croteau 1986; 1987; Hussaina et al. 2010; Mkolo et al. 2011) and 1,8-cineol, camphor, α-pinene as well as borneol in rosemary (El-Massry et al. 2008; Yang et al. 2010; Minaian et al. 2011). The commercial development of plants as sources of antioxidants to enhance health and food preservation is of current interest (Aberoumand 2011; Hussain et al. 2011) since the most widely used synthetic antioxidants in food, namely butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), propyl galate (PG) and tertiary butyl hydroquinone (TBHQ) have been suspected of causing or promoting negative health effects (Pokorny 1991; Suhaj 2006).

Moreover, due to the carcinogenic potential of synthetic antioxidants, natural phenolic antioxidants are being promoted as food preservatives and diet supplements (Shetty 1997; Botsoglou et al. 2002). As a natural source of antioxidants, wild herbs, spices, fruits, nuts, leafy vegetables and EOs from aromatic plants have been studied, for example, those of oregano (Kulisic et al. 2004) and rosemary (El-Massry et al. 2008). Using three different assay systems, limonene in celery seed, α-pinene in juniper berry, myriscin in parsley seed and germacrene in ylang-ylang showed high antioxidant activity (Wei and Shibamoto 2007). Eugenol, carvacrol, and thymol also possess the potential as natural agents for food preservation (Juliani and Simon 2002; Lee et al. 2005).

A literature survey indicated that the identification of terpenoids, antioxidant activity and radical scavenging activity of EOs and extracts of some Lamiaceae species were studied by others. Among the many studies to determine the antioxidant activities of marjoram (Majorana hortensis), peppermint (Mentha piperita), spearmint (Mentha spicata), and rosemary (Rosmarinus officinalis), the most common method employed was the Folin–Ciocalteu method, with the exception of the studies by Botsoglou et al. (2002) and El-Ghorab et al. (2004). These authors determined the antioxidant activity of essential oils from marjoram, peppermint, and spearmint using the radical scavenging activity of the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) method. The DPPH is a free radical that can be reduced by antioxidants to a product that is not free radical active. The antioxidant activity is by the extent of the reduction of the DPPH; the lower the concentration of DPPH, the stronger the antioxidant activity is. The DPPH method is simple, cost effective and rapid, and provides a measurement of the total antioxidant capacity (TAC) of the samples. However, the Folin–Ciocalteu method is more complex and laborious, and it is performed at room temperature in a water bath. Despite these limitations, it is still commonly used as an alternative method of evaluating the total phenolic content of plant extracts and essential oils (Pellizzari et al. 2002).
spicata L.) and rosemary (Rosmarinus officinalis L.), most studies have focused mainly on the antioxidant activities of crude extracts. Although these four culinary and medicinal fresh herbs are mainly used for their distinctive aromas, there have been few studies on the identification of aroma components of the four distilled fresh herbs cultivated in Egypt. Our study was performed to evaluate the constituent make-up of EOs extracted from these herbs, as well as their total phenolic equivalent and antioxidant ability. Such results on the chemical composition of the EOs would allow for the identification of the best potential source of natural antioxidants.

MATERIALS AND METHODS

Plant material

The aerial parts (leaves, stems and flowers (in the case of marjoram only)) of the four Lamiaceae species were collected from the Ancient Modern Organic Farm (AMOF), 10 Km from Alamaen off the Alexandria-Cairo desert road, Egypt in April 2010 during the flowering season.

EO isolation method

Quantitative determination of EO from fresh and air-dried samples of all four herbs was achieved by hydro-distillation for 3 h using a Clevenger-type apparatus. Oil yield per plant on a fresh and air-dried weight basis were determined. The yield of EO produced per plant was calculated by multiplying the average of fresh or dry herb weight of the plant by the average oil percentage. The obtained oil was dried over anhydrous sodium sulphate and after filtration, stored in a sealed vial at -4°C until tested and analyzed.

Gas chromatography-mass spectrometry (GC–MS) analysis

The EOs of the four fresh herbs were analyzed by GC/MS at the National Research Centre, Dokki, Cairo, Egypt using a Varian 3400 GC equipped with a DB-5 fused silica capillary column (30 m × 0.25 mm; i.d. 0.25 μm film thickness). The multi-step temperature program was increased from 60°C (held for 3 min) to 260°C (held for 10 min) at a rate of 5°C min⁻¹. The carrier gas was helium at a flow rate of 1 ml min⁻¹ and the sample size was 1 μl (injector temperature was 250°C). The mass spectrometer was a Varian-Finnigan SSQ 7000 operating with an ionization voltage of 70 eV. Scan time and mass range were 5 s and 40-400 m/z, respectively.

Compound identification

Identification of EO constituents was made by matching their recorded mass spectra with those stored in the Wiley/NBS mass spectral library of the GC–MS data system and other published mass spectra. Retention index was calculated for each compound using the retention times of a homologous series of C₆ - C₂₆ n-alkanes (Adams 2001).

DPPH radical scavenging assay

The antioxidant activity of the four studied EOs was assessed on the basis of the scavenging activity of the stable 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH; Sigma Chemical Co.; St Louis, MO, USA) according to Miliauskas et al. (2004). Various concentrations of all four EOs (i.e., 25, 50, 100 and 200 μg/ml) were diluted five times with DPPH solution in methanol. The blank consisted of a 0.4 mM methanolic solution of DPPH. After 30 min incubation at room temperature, the reduction in the number of free radicals was measured by reading the absorbance at 517 nm using a Jenway 6405 UV-Vis spectrophotometer. TBHQ (Sigma) was used as the reference standard. All determinations were performed in triplicate. The percentage inhibition of DPPH radical by each EO was calculated according to the following formula (Yen and Duh 1994):

\[
\% \text{Inhibition} = \left(\frac{A_B - A_A}{A_B} \right) \times 100
\]

where \(A_B \) absorption of blank sample (t = 0 min) and \(A_A \) absorption of tested oil (t = 30 min).

IC₅₀ values, which represented the concentration of EO or TBHQ that caused 50% scavenging, were determined from the plot of inhibition percentage against concentration.

Determination of total phenolic compounds

The total phenolic equivalent of the four studied EOs was determined according to the method described by Taga et al. (1984). Briefly, 100 μl of each pure (100%) EO was dissolved in 10 ml of methanol, and 2 ml of this solution was made up with 0.3% HCl to 5 ml. A 100-μl aliquot of the resulting solution was added to 2 ml of 2% Na₂CO₃ and after 2 min, 100 μl of Folin-Ciocalteau reagent (Merck, Darmstadt, Germany) (diluted with methanol 1:1) was added and mixed well. After 30 min incubation, the absorbance of mixtures was recorded spectrophotometrically at 750 nm. The total phenolic contents were calculated as gallic acid equivalent (GAE) from a calibration curve of gallic acid standard solutions and expressed as mg of gallic acid per 100 μl of EO sample.

Statistical analysis

Hydro-distillation of EOs, determinations of fresh and dry weight of herbs, antioxidant activity and total phenolic contents were conducted in triplicate. Data were expressed as mean ± standard deviation. Analysis of data was carried out according to Snedecor and Cochran (1990), and means were compared using least significant difference (LSD at the 5% level).

RESULTS

Growth parameters

Table 1 indicates the mean values of the growth parameters of marjoram peppermint, spearmint and rosemary. Marjoram recorded the highest fresh and dry matter. The mean values of the growth of spearmint were significantly higher than those of peppermint which could be attributed to the fact that more height and branching increased new shoots which resulted in a higher accumulation of fresh and dry matter.

EO yield and composition

Distillation of the fresh and air-dried aerial parts of marjoram, peppermint, spearmint and rosemary yielded (in %) (0.592, 1.625), (0.403, 1.213), (0.314, 0.756) and (0.375, 0.802), respectively, and in all cases, a pure light colourless oil. Oil yield per plant on a fresh and air-dried weight basis (ml EO/plant g) of marjoram, peppermint, spearmint and rosemary plant were (0.390, 358), (0.168, 0.155), (0.145, 0.122), (0.146, 0.142), respectively (Table 2). Marjoram recorded the highest mean value of EO percentage and yield per plant on a fresh and air-dried weight basis. In contrast, spearmint recorded the lowest mean value of EO percentage and yield per plant on a fresh and air-dried weight basis.

The EOs obtained by hydrodistillation of four Lamiaceae herbs were analyzed by GC/MS (Table 3). In M. hortensis, 19 components were identified representing 98.89% of the total oil with γ-terpinene (19.77%), sabine hydrate (17.56%), terpinen-4-ol (14.96%), α-terpinene (13.25%), sabine (12.35%) and phellandrene (7.11%) as the main constituents followed by p-menth-1-en-8-ol (α-terpinol (4.82%), α-pinene (2.07%) and α-myrcone (1.99%).

On the other hand, menthone (36.58%), neo-menthol (40.47%), 1,8-cineole (8.69%), menthol acetate (4.33%), sabine (1.64%) and α-pinene (1.11%) were the main components among the 28 constituents characterized in the oil of M. piperita representing 99.67% of the total components detected. In M. spicata, 28 components were identified representing 99.54% of the total oil with carvone (42.84%), carveol (34.98%), limonene (4.28%), 1,8-cineole (2.12%), α-
caryophyllene (2.03%), α-pinene (1.93%) and dihydrocarvone (1.79%) as the main constituents.

Moreover, the predominant compounds in the oil of *R. officinalis* were 1,8-cineole (21.55%), α-pinene (17.77%), camphor (15.38%), bergamotene (8.46%), borneol (7.77%), linalool (5.06%), endoborneol acetate (3.84%), endoborneol (3.74%) camphene (3.53%), α-myrcene (1.72%) and β-caryophyllene (1.37%) among the 24 constituents characterized in the oil and representing 95.40% of the total components.

There was great variability in the chemical composition of EOs obtained from the four Egyptian aromatic plants. The presence of the monoterpene hydrocarbons α-pinene and β-myrcene, a high percentage of oxygenated monoterpenes (ranging from 37.34% in marjoram to 87.78% in peppermint) and the sesquiterpene hydrocarbon β-caryophyllene were the common factors for the four Lamiaceae EOs. On the other hand, a high concentration of 1,8-cineole characterized the peppermint and rosemary EOs (8.69 and 21.55%, respectively).

Total phenolic equivalent and antioxidant activity

Table 2 shows that variations in the radical scavenging activities and total phenolic equivalent of the four EOs investigated were statistically significant. The antioxidant activity of herbal EO was investigated using the DPPH assay. The IC₅₀ values ranged from 59.19 to 65.35 µg mL⁻¹. Peppermint oil has the best free radical scavenging activity (IC₅₀ = 59.19 µg mL⁻¹), followed by rosemary oil (IC₅₀ = 62.49 µg mL⁻¹). The lowest radical scavenging activity was exhibited by marjoram oil (IC₅₀ = 65.35 µg mL⁻¹). Moreover, the reducing power of the four EOs was much lower than that observed for the synthetic antioxidant TBHQ (IC₅₀ = 29.81 µg mL⁻¹).

Total phenolic equivalent were determined using the Folin-Ciocalteu reagent and expressed as gallic acid equivalent in mg/100 µl. The total phenolic equivalent ranged from 0.042 to 0.163 mg/100 μl EO. The total phenolic equivalent in mg/100 μl. The total phenolic equivalent ranged from 0.042 to 0.163 mg/100 μl EO. The total phenolic equivalent in mg/100 μl.

DISCUSSION

Essential oil composition

In the present study, the EO of four fresh herbs cultivated in Egypt was hydro-distilled to evaluate the EO yield, composition, antioxidant activity and total phenolic contents (Table 3). According to Alarmal Mangai and Ravi (2012), Osman et al. (2010), Atti-Santos et al. (2005), and El-Keltawi and Croteau (1987), the EO content on a fresh weight basis of marjoram (South India), peppermint (Sudan), rosemary (Brazil) and spearmint (USA) were 0.25, 0.40, 0.37 and 0.50%, respectively. In Egypt, the EO content of cultivated marjoram was higher but peppermint and rosemary contained similar EOs, while spearmint contained less EO on a fresh weight basis. Our results may have differed due to different experimental conditions, which interfere with EO content and composition. A similar variation in the EO content on a fresh weight basis was registered for *M. hortensis* cultivated in India, EO ranged from 0.7% (at flowering stage), 0.66% (at flower initiation) to 0.20% (early vegetative stage) (Verma et al. 2010b). Marotti et al. (1993) reported that EO yield and composition depend on pedoclimatic conditions and on the ontogenic stage of the plant. Previous research on the dried aerial parts of *Mentha piperita* (in Morocco) and *M. spicata* growing wild in Greece indicated a similar oil content to the Egyptian counterpart, recording 1.02% and ranging from 0.3 to 2.2%, respectively (Kokkin and Vokou 1989; Dervo et al. 2010), 0.6 to 0.8% in Turkey (Basar et al. 1999) and 0.8 to 1.9% in different accessions of *Iranian M. spicata* (Zeinali et al. 2005). The EO content of *Egyptian M. spicata* was similar to the EO content of wild plants growing in different parts of the world.

In the present work, although marjoram peppermint, spearmint and rosemary belong to the same family, EO synthesis and accumulation varied. Marjoram recorded the highest EO percentage and yield per plant on a fresh and air-dried weight basis due to the highest mean fresh and dry matter production. According to Czepak (1998), the higher the dry matter yield of plants the higher their EO yield. In contrast, peppermint had the lowest mean EO percentage and yield per plant on a fresh and air-dried weight basis, perhaps due to the small number of oil glands, reduced biosynthesis of monoterpene and consequently low EO production. Moreover, EO yield per plant on a dry weight basis was lower than that on a fresh weight basis for the four studied herbs. Rabak (1917) suggested that a reduction in EO yield may occur if plants are dried before distillation, due to changes that favor the formation of esters and the production of free acids in *M. piperita*.

The major constituents of marjoram EO detected in this study (γ-terpinene, sabine hydrate, terpenin-4-ol, α-terpinene, sabinene and phellandrene) were consistent with those of previously published studies but at different concentrations of individual components (Novak et al. 2002, Mishra et al. 2004; Verma et al. 2010a, 2010b). Variability in the volatile components among marjoram EO from our results appears to be largely due to stage of harvest, seasonal and environmental factors, in addition to the use of different methods of extracting the volatile components (El-

Table 1 Growth parameters of marjoram, peppermint, spearmint and rosemary herbs cultivated in Egypt. Values are the means of three replicates ± S.D.

<table>
<thead>
<tr>
<th>Lamiaceae species</th>
<th>Plant height (cm)</th>
<th>No of branches/ plant</th>
<th>Fresh weight (g/plant)</th>
<th>Dry weight (g/plant)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marjoram (Majorana hortensis)</td>
<td>38.57 ± 1.25</td>
<td>23.00 ± 1.00</td>
<td>65.89 ± 0.65</td>
<td>22.05 ± 0.62</td>
</tr>
<tr>
<td>Peppermint (Mentha piperita)</td>
<td>20.00 ± 1.0</td>
<td>17.33 ± 1.15</td>
<td>41.56 ± 1.05</td>
<td>12.78 ± 0.24</td>
</tr>
<tr>
<td>Spearmint (Mentha spicata)</td>
<td>35.33 ± 2.08</td>
<td>30.33 ± 2.08</td>
<td>46.28 ± 0.95</td>
<td>19.10 ± 1.08</td>
</tr>
<tr>
<td>Rosemary (Rosmarinus officinalis)</td>
<td>28.67 ± 1.53</td>
<td>17.00 ± 1.00</td>
<td>39.07 ± 1.10</td>
<td>17.77 ± 1.03</td>
</tr>
<tr>
<td>L.S.D. at 5%</td>
<td>3.06</td>
<td>2.60</td>
<td>1.60</td>
<td>1.86</td>
</tr>
</tbody>
</table>

Table 2 Essential oils contents; radical scavenging activity and total phenolic contents of tested essential oil of marjoram, peppermint, spearmint and rosemary herbs cultivated in Egypt. Values expressed are means of three replicates ± S.D.

<table>
<thead>
<tr>
<th>Lamiaceae species</th>
<th>Essential oil content (ml EO/100 g)</th>
<th>Essential oil yield (ml EO/plant g)</th>
<th>Phenolic contents (mg/100 µl as gallic acid equivalent)</th>
<th>Radical scavenging activity (IC₅₀ value (µg/ml))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marjoram (Majorana hortensis)</td>
<td>0.592 ± 0.02</td>
<td>1.625 ± 0.02</td>
<td>0.390 ± 0.004</td>
<td>0.042 ± 0.006</td>
</tr>
<tr>
<td>Peppermint (Mentha piperita)</td>
<td>0.403 ± 0.009</td>
<td>1.213 ± 0.084</td>
<td>0.168 ± 0.004</td>
<td>0.153 ± 0.013</td>
</tr>
<tr>
<td>Spearmint (Mentha spicata)</td>
<td>0.314 ± 0.002</td>
<td>0.756 ± 0.005</td>
<td>0.145 ± 0.003</td>
<td>0.122 ± 0.008</td>
</tr>
<tr>
<td>Rosemary (Rosmarinus officinalis)</td>
<td>0.375 ± 0.005</td>
<td>0.802 ± 0.002</td>
<td>0.146 ± 0.004</td>
<td>0.142 ± 0.009</td>
</tr>
<tr>
<td>L.S.D. at 5%</td>
<td>0.040</td>
<td>0.080</td>
<td>0.007</td>
<td>0.023</td>
</tr>
</tbody>
</table>

Keltawi and Croteau 1987; El-Ghorab et al. 2004). In India, considerable variations in the qualitative composition of the Majorana hortensis oils were obtained from different ages. The oil was mainly composed of monoterpenes and to a small extent sesquiterpenes. Oxygenated monoterpenes (65.69-76.95%) dominated at late vegetative stage and flower initiation. On the other hand, monoterpenic hydrocarbons increased and attained the maximum (15.08-29.65%) at flowering stage (Verma et al. 2010b).

In M. piperita EO, the main compound was neo-men-
thol followed by menthol, 1,8-cineole and menthol acetate. Similarly, neo-menthol was previously reported as major terpene in *M. piperita* (Gupta and Saxena 2010; Yang et al. 2010). El-Keltawi and Croteau (1986) showed percentages of chemical constituents in peppermint similar or close to our values although menthol was the major compound followed by menthol, isomenthol, 1,8-cineole and neo-menthol. In the present study, variability in the volatile components may be due to diagnostic, environmental factors and origin. In addition, *M. spicata* EO is rich in carvone and carvyl acetate, representing 77.82% of quantified total volatiles followed by limonene, 1,8 cineole, dihydrocarvone, carvyl acetate and sabine hydrate. The essential oil profile of spearmints from this study was similar to EO from Pakistan (Hussaina et al. 2010). Maffei et al. (1986) previously reported carvone, dihydrocarvone and their related compounds carveol, carvyl acetate, dihydrocarvyl acetate as the main components in a number of spearmint EOs. Several authors (El-Keltawi and Croteau 1987; Zhelezakov et al. 2010; Mkolo et al. 2011) indicated the existence of carvone and limonene as the major components in *M. spicata*. Baser et al. (1999) reported the occurrence of menthone, isomenthone, trans-sabinene hydrate, carvone, terpinen-4-ol and 1,8-cineole, linalool and carvacrol in both EOs in Turkish *M. spicata*. The dried aerial parts of 9 accessions of *M. spicata* L. could be divided into six different chemotypes with significant variation in EO composition between the accessions (Zeilani et al. 2005). The present study indicates that EO rich in carvone and carvyl acetate was distinctive for *M. spicata* cultivated in Egypt and Pakistan (Hussaina et al. 2010) which may be genetically different from *M. spicata* growing in other countries. Moreover, the analysis of *R. officinalis* EO revealed 1,8-cineole as the major compound followed by α-pinene, camphor and borneol, respectively. Previous reports showed chemical composition closer to our findings in the EO of fresh and dried *R. officinalis* leaves although the relative quantities of individual components varied; 1,8-cineole was the predominant compound (El-Massy et al. 2008; Yang et al. 2010) but in another study, a-pinene was the main compound followed by camphor and 1,8-cineole (Bernstein et al. 2009). Differences in the volatile components percent in our plant material might have been caused by climatic and seasonal factors, and the origin and stage of distillation.

Antioxidant activity

In the present study, peppermint and rosemary EOs, which contained a high amount of phenolic compounds (estimated as gallic acid mg/100 μl), also exhibited high antioxidant activity (determined by DPPH assay) (Table 2). The DPPH radical-scavenging assay proved that antioxidant activity of the rosemary EO (fresh aerial parts) in this study was higher than the antioxidant activity of rosemary EO (dried leaves) in another study (Dalli et al. 1999), which was attributed to the existence of carvone and limonene as the major compounds in peppermint oil. In our study, scavenging abilities of TBHQ were higher than the antioxidant activity of rosemary EO (fresh aerial parts) in this study was higher than that of angelica EO (Wei and Shibamoto 2007). Moreover, thyme (*Thymus vulgaris*) and oregano (*Origanum syriacum*) EOs presented better antioxidant profiles than *R. officinalis* and *M. hortensis* (Viuda-Martos et al. 2010) and the antioxidant activities of thyme and oregano EOs were higher that our study and TBHQ. The DPPH radical scavenging activity of *O. syriacum* EO was nearly similar to that of the ethanolic extract of *O. heracleoticum* (Conforti et al. 2011) and higher than our *M. hortensis* EO (fresh aerial parts) and *O. vulgare* EO (air-dried flower tops and stalks) (Kulisic et al. 2004). In our study, when using the DPPH radical scavenging method, the antioxidant activity of the studied synthetic antioxidant (TBHQ) was higher than that of our four studied EOs, and is nearly similar to that of n-propylgallate and BHA using the volatometric assay (El-Massy et al. 2008). Radical scavenging capacity on DPPH radical, chelating effect and hydroxyl radical scavenging effects supported that the antioxidant activity of both synthetic antioxidants BHA and BHT were relatively similar (Singh et al. 2007). Similarly, the antioxidant activities of salvia, lemon balm, patchouli and lavender were stronger than those of peppermint EO (Mkolo et al. 2011), and that of tailored pepper EO was relatively lower than that of BHA and BHT (Wei and Shibamoto 2007). Also, oregano (*O. vulgare*) EO was less effective as an antioxidant than ascorbic acid, but comparable to α-tocopherol and BHT (Kulisica et al. 2004) (Tables 4, 5).

The antioxidant activities of EOs and other compounds from other studies (Tables 4, 5) (in relation to our results*) in decreasing order was: Tailed pepper ≥ thyme > oregano (*O. syriacum*) > n-propylgallate ≥ BHA = BHT > jasmine > peppermint > salvia > rosemary > spearmint > marjoram > lemon balm > rosemary (dry aerial parts- southwest of Tunisia) > patchouli > lavender > oregano (*O. vulgaris*) ≥ angelica. When observed from another perspective, i.e., the antioxidant activities of some Lamiaceae EOs (in relation to our results*), the decreasing order was: thyme > oregano (*O. syriacum*) > TBHQ > peppermint > salvia > rosemary > spearmint > marjoram > lemon balm > rosemary (dry aerial parts- southwest of Tunisia) > patchouli > lavender > oregano (*O. vulgaris*).

The antioxidant activities of *Oregano* EOs from other studies (Tables 4, 5) (in relation to our results*) were higher than that of angelica EO (Wei and Shibamoto 2007). Moreover, thyme (*Thymus vulgaris*) and oregano (*Origanum syriacum*) EOs presented better antioxidant profiles than *R. officinalis* and *M. hortensis* (Viuda-Martos et al. 2010) and the antioxidant activities of thyme and oregano EOs were higher that our study and TBHQ. The DPPH radical scavenging activity of *O. syriacum* EO was nearly similar to that of the ethanolic extract of *O. heracleoticum* (Conforti et al. 2011) and higher than our *M. hortensis* EO (fresh aerial parts) and *O. vulgare* EO (air-dried flower tops and stalks) (Kulisic et al. 2004). In our study, when using the DPPH radical scavenging method, the antioxidant activity of the studied synthetic antioxidant (TBHQ) was higher than that of our four studied EOs, and is nearly similar to that of n-propylgallate and BHA using the volatometric assay (El-Massy et al. 2008). Radical scavenging capacity on DPPH radical, chelating effect and hydroxyl radical scavenging effects supported that the antioxidant activity of both synthetic antioxidants BHA and BHT were relatively similar (Singh et al. 2007). Similarly, the antioxidant activities of salvia, lemon balm, patchouli and lavender were stronger than those of peppermint EO (Mkolo et al. 2011), and that of tailored pepper EO was relatively lower than that of BHA and BHT (Wei and Shibamoto 2007). Also, oregano (*O. vulgare*) EO was less effective as an antioxidant than ascorbic acid, but comparable to α-tocopherol and BHT (Kulisica et al. 2004) (Tables 4, 5).

Tables 4 and 5

<table>
<thead>
<tr>
<th>EOs</th>
<th>Antioxidant activity parameter</th>
<th>DPPH radical scavenging ability (μM)</th>
<th>Chelating effect (μM)</th>
<th>Hydroxyl radical scavenging ability (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh peppermint EO</td>
<td></td>
<td>373 ± 18</td>
<td>0.42 ± 0.03</td>
<td>0.30 ± 0.01</td>
</tr>
<tr>
<td>Dried peppermint EO</td>
<td></td>
<td>500 ± 24</td>
<td>0.78 ± 0.04</td>
<td>0.45 ± 0.02</td>
</tr>
<tr>
<td>Fresh rosemary EO</td>
<td></td>
<td>500 ± 24</td>
<td>0.78 ± 0.04</td>
<td>0.45 ± 0.02</td>
</tr>
<tr>
<td>Dried rosemary EO</td>
<td></td>
<td>500 ± 24</td>
<td>0.78 ± 0.04</td>
<td>0.45 ± 0.02</td>
</tr>
</tbody>
</table>

α-tocopherol > BHA > BHT} > pepper-

Table 5 includes the antioxidant activities of EOs and other compounds from other studies (Tables 4, 5) (in relation to our results*) in decreasing order was: Tailed pepper ≥ thyme > oregano (*O. syriacum*) > n-propylgallate ≥ BHA = BHT > jasmine > peppermint > salvia > rosemary > spearmint > marjoram > lemon balm > rosemary (dry aerial parts- southwest of Tunisia) > patchouli > lavender > oregano (*O. vulgaris*).
larly, limonene in celery seed, α-pinene in juniper berry, and 4-terpineol and carvone isolated from Mentha spicata showed high antioxidant activities (Lee et al. 2005; Elmastas et al. 2006; Wei and Shibamoto 2007). The total oregano (O. vulgare L.) EO, the CHO fraction, pure thymol and carvacrol, as well as the hydrocarbon CH fraction exhibited almost the same antioxidant power (Kulisic et al. 2004). Ruberto and Baratta (2000) tested about 100 pure constituents of EOs and confirmed that the monoterpene hydrocarbons δ-terpinene, α-terpinene and p-cymene showed very high antioxidant activity. In our study γ-terpinene, α-terpineol and sabinene were the major components of the M. hortensis CH fraction. High antioxidant activity of sweet marjoram (M. hortensis) water extracts has also been reported (Triantaphyllou et al. 2001). The phenolic hydroxyl groups present in plant antioxidants have redox properties (Pietta 2000) allowing them to act as a reducing agent and a hydrogen donator in the DPPH assay. Thus, difference in composition of the herbal EO might result in their different antioxidant activity. Epidemiological studies have suggested a positive association between the consumption of phenolic-rich foods or beverages and the prevention of disease due to the presence of antioxidant components such as phenolics (Rice-Evans et al. 1997).

Free radicals in the human body have adverse effects on its immune system (Pourmorad et al. 2008). Antioxidants promote health and lower the risk of cancer, hypertension and heart disease (Valko et al. 2007) and protect the body from damage caused by free radical-induced oxidative stress (Souri et al. 2004). Rosemary (R. officinalis L.) and marjoram (O. majorana) extracts have potent natural antioxidant properties mostly due to their phenolic compounds (Hossain et al. 2008; Huda-Faujjan et al. 2009), which has led to the use of rosemary, either in ground form or as an extract (Peng et al. 2005), and oregano (O. vulgare L.) EO in the food industry as a potential natural antioxidant additive (Kulisic et al. 2004).

CONCLUSIONS

EO synthesis and accumulation in four Egyptian aromatic plants was comparable to that of similar cultivated and wild growing plants in different parts of the world. Marjoram and spearmint had the highest and lowest mean EO percentage and yield per plant on a fresh and air-dried weight basis, respectively. The major constituents of marjoram, peppermint, spearmint and rosemary EOs detected in this study were consistent with those of previously published studies. EO rich in carvone and carvacrol was distinctive for M. spicata cultivated in Egypt. The DPPH radical scaven-
ging assay proved that the antioxidant activity of four Egyptian aromatic plants in this study was higher than some studied Lamiaceae EOs namely lemon balm, patchouli, lavender (cultivated in Pakistan) and oregano (O. vulgare) EOs, although lower than thyme, O. syriacum EOs and a synthetic antioxidant, TBHQ. The antioxidant activity of the EOs from fresh aerial parts was higher than that of EOs derived from air-dried aerial parts. Overall, the highest and the lowest phenolic content and antioxidant activity were found in peppermint and marjoram oils, respectively. Peppermint EO exhibited high concentrations of menthol and 1,8-cineole which contributed to the antioxidant activity of its EO. Marjoram EO showed moderate antioxidant activity due to the presence of γ-terpinene. The four spices have natural antioxidant activity in the herbal EO and as such provide defense against cancer-inducing free radical damage. Furthermore, the inclusion of aroma compounds of the four spices in the diet should be part of any cancer preventive program. Peppermint, a member of the Lamiaceae, represents one of the best potential sources of potent natural antioxidants for the food industry as a natural antioxidant additive.

REFERENCES

Aberoumand A (2011) Survey on some food plants as source of antioxidants. Innovative Romanian Food Biotechnology 8, 22-25

Bernstein N, Chaimovitch D, Dudai N (2009) Effect of irrigation with synthetic or organically derived fertilizer on essential oil, antioxidant activity and phenolic compounds in oregano and rosemary. Agronomy Journal 101, 1-10

Table 5 Antioxidant activity of essential oils, plant extracts and synthetic antioxidants using different bioassays methods.

<table>
<thead>
<tr>
<th>Plant species</th>
<th>Test extract</th>
<th>Methods of determination of antioxidant activity</th>
<th>IC50</th>
<th>Reference and Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oregano (O. vulgare L.)</td>
<td>EO (air-dried flower tops and stalks)</td>
<td>1) DPPH radical scavenging method</td>
<td>1) IC50 (g/l) EO 0.50 BHT</td>
<td>1.8 × 10^{-2}</td>
</tr>
<tr>
<td></td>
<td>Reference standard BHT, α-tocopherol, ascorbic acid</td>
<td>2) β-carotene bleaching (BCB) test</td>
<td></td>
<td>α-Tocopherol 8.6 × 10^{-3}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) Thiobarbituric acid reactive species (TBARS) assay</td>
<td></td>
<td>Ascorbic acid 4.4 × 10^{-3}</td>
</tr>
<tr>
<td>Anise, cinnamon, ginger, licorice, mint, nutmeg, vanilla</td>
<td>Spice extracts</td>
<td>1-Trolox equivalent antioxidant capacity (TEAC) assay</td>
<td></td>
<td>Capacity of antioxidant activity in decreasing order was cinnamon ≥ propyl gallate > mint > anise > BHA > licorice ≥ vanilla > ginger > nutmeg > BHT.</td>
</tr>
<tr>
<td>Rosemary (R. officinalis)</td>
<td>EO (air-dried leaves)</td>
<td>1) Spectrophotometric assay</td>
<td>1) IC50 (g/l) EO 0.250 n-propylgallate 0.0154</td>
<td>BHA 0.003</td>
</tr>
<tr>
<td></td>
<td>Reference standard n-propylgallate, BHA</td>
<td>2) Voltammetric assay</td>
<td>2) IC50 (g/l) EO 0.280 n-propylgallate 0.040 BHA 0.028</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) Scavenging effect on DPPH radical using electron spin resonance (ESR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extract EO</td>
<td>DPPH assay</td>
<td>Three test methods proved that rosemary extract had a higher antioxidant activity than blackseed EO.</td>
<td></td>
</tr>
<tr>
<td>Oregano (O. heracleosticum)</td>
<td>Ethanolic extract of the aerial parts</td>
<td>1) DPPH test</td>
<td>1) IC50 = 12.8 µg/ml</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) β-carotene bleaching test</td>
<td>2) IC50 = 12.9 and 14.1 µg/ml at 30 and 60 min of incubation, respectively.</td>
<td></td>
</tr>
<tr>
<td>Lavender (L. angustifolia), patchouli (Pogostemon cablin), lemon balm (Melissa officinalis), salvia (Salvia officinalis)</td>
<td>EOs (aerial parts)</td>
<td>DPPH test</td>
<td>IC50 (µg/ml): Lavender 289.0, patchouli 225.7, lemon balm 69.9, salvia 62.3, BHT 9.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reference standard BHT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosemary (R. officinalis)</td>
<td>EOs (dry aerial parts)</td>
<td>DPPH test</td>
<td>1) IC50 (µg/ml): Rosemary 110.20, BHT 40.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reference standard BHT</td>
<td>2) β-carotene bleaching test</td>
<td>2) IC50 (µg/ml): Rosemary 27.28, BHT 20.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) Reducing power antioxidant method</td>
<td>3) EC50 (µg/ml): Rosemary 38.68, BHT 13.80</td>
<td></td>
</tr>
<tr>
<td>Marjoram (M. hortensis), peppermint (M. piperita), spearmint (M. spicata), rosemary (R. officinalis)</td>
<td>EO (fresh aerial parts)</td>
<td>DPPH radical scavenging method</td>
<td>IC50 (µg/ml): Marjoram 65.35, peppermint 59.19, spearmint 63.80, rosemary 62.49, TBHQ 29.81</td>
<td></td>
</tr>
</tbody>
</table>

ABTS = 2,2’-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) assay; Art. = Artemisia; BCB = β-carotene bleaching test; DPPH = 2,2-diphenyl-1-picrylhydrazyl radical scavenging method; B. = Boswellia; BHA = butylated hydroxyanisole; BHT = butylated hydroxytoluene; C. = Cinnus; C. = Cymbopogon; EO = essential oil; L. = Lavendula; M. = Majorana; M. = Mentha; O. = Origanum; P. = Piper; R. = Rosmarinus; TBARS = thiobarbituric acid reactive species assay; T. = Thymus.; EC50 concentration at which the absorbance is 0.5

ganum heraclesticum L.) ethanolic extract on oxidative damage and on inhi-

bition of lipooxygenase saturated RAW 264.7 macrophages. Journal of Enzyme Inhibition and Medicinal Chemistry 26, 404-411

Czekap MK (1998) Produção de óleo bruto e mentol cristalizável em oito fre-

centes de colheita do menta (Menta arvensis L.). In: Ming LC, Scheffer

MC, Correa Júnior C, Barros IB, Mattos IKA (Eds) Plantas Medicinais,

Antropomorfas - Avanços na Pesquisa Agronômica (1a Edn.), FCA-UNESP, Botucatu, Brasil, pp 53-80

El-Ghorab AH, Mansour AF, El-Massry KF (2011) Antioxidants attributes of

Mentha spicata L. In: Ming LC, Scheffer MC, Correa Júnior C, Barros IB,

Mattos IKA (Eds) Plantas Medicinais, Antropomorfas - Avanços na Pesquisa Agronômica (1a Edn.), FCA-UNESP, Botucatu, Brasil, pp 53-80

El-Ghorab AH, Mansour AF, El-Massry KF (2011) Antioxidants attributes of

Mentha spicata L. In: Ming LC, Scheffer MC, Correa Júnior C, Barros IB,

Mattos IKA (Eds) Plantas Medicinais, Antropomorfas - Avanços na Pesquisa Agronômica (1a Edn.), FCA-UNESP, Botucatu, Brasil, pp 53-80

El-Keltawi NE, Croteau R (1986) Influence of ethephon and daminozide on

growth and oil content of peppermint and sage. Phytochemistry 25,

1285-1288

El-Keltawi NE, Croteau R (1987) Salinity depression of growth and essential

oil formation in spearmint and marjoram and its reversal by foliar applied
cytokin. Phytochemistry 26, 1333-1334

cytokin. Phytochemistry 26, 1333-1334

cytokin. Phytochemistry 26, 1333-1334

Huda-Faujian N, Noriham A, Norrakiah AS, Babji AS (1986) Influence of ethephon and daminozide on
growth and oil content of peppermint and sage. Phytochemistry 25,

1285-1288

Journal of Agricultural and Food Chemistry 52, 140-151

joram (Majorana hortensis L.) in Uttranchal Pradesh. Indian Perfumer 48, 41-45

joram (Majorana hortensis L.) in Uttranchal Pradesh. Indian Perfumer 48, 41-45

Mkolo M, OlowoJO YO, Sako KB, Mdakane STR, Mitonga MMA, Magano

SR (2011) Repellency and toxicity of essential oils of Mentha piperita and

Mentha spicata on larvae and adult of Amblyoma hebraicum (Acari: Ixodi-

idae). Journal of Environmental and Biological Sciences 2011, 7 pp

Murcia MA, Egea I, Romojarjo F, Parras P, Jiménez AM, Martínez-Tomé

M (2004) Antioxidant evaluation in dessert spices compared with common

traditional sample of oregano (Origanum majorana L., Lamiaceae). Flavo-

or and Fragrance Journal 17, 175-180

Okoh OO, Sadimenko AP, Afolayan AJ (2011) Antioxidant activities of

Rosmarinus officinalis L. essential oil obtained by hydro-distillation and solvent
free microwave extraction. African Journal of Biotechnology 10 (20), 4207-

4215

Osman MA, Mohamed AA, Hussein FA, Abdalla EI (2010) The constituents of volatile oil of peppermint (Mentha piperita L.) grown in Sudan. Interna-
tional Journal of Current Research 1, 93-96

nal of Pharmaceutical and Biomedical Analysis 39, 431-437

Pietta PG (2000) Flavonoids as antioxidants. Journal of Natural Product 63,

1035-1042

Pokorny J (1993) Natural antioxidant for food use. Trends in Food Science

and Technology 9, 223-227

African Journal of Biotechnology 5, 1142-1145

Rahab F (1977) The effect of cultural and climatic conditions on the yield and
major components of peppermint oil from Washington, Washington. 90, 450-454

Rameillal RM (2009) Anticancer and anti oxidant activities of Matricaria cha-

monilla L. and Majorana hortensis essential oils. Research Journal of Medi-

cine and Medical Sciences 4 (2), 332-339

Riceana CA, Miller NA, Pagano JH (1997) Antioxidant properties of phe-

nolic compounds. Trends in Plant Science 2, 152-159

components in two lipid model systems. Food Chemistry 69, 167-174

Shetty K (1997) Biotechnology to harness the benefits of dietary phenolics:

Focus on Lamiaceae. Asia Pacific Journal of Clinical Nutrition 6, 162-171

Singh G, Marimuthu M, Heluani CS, Catalan CA (2007) Chemical consti-
tuents, antioxidative and antimicrobial activities of essential oil and oleoresin of
tailed pepper (Piper c.ubeba L.). International Journal of Food Engineer-

ing 3 (6), Article H

Taga MS, Miller EE, Pratt DE (1984) Chia seeds as a source of natural lipid
antioxidants. Journal of the American Oil Chemists Society 61, 928-931

water extracts obtained from herbs of the species Lamiaceae. International Journal of Foods Science and Nutrition 52, 313-317

Verma RS, Sashidhara KY, Yadav A, Naqvi AA (2010a) Essential oil composition of Majorana hortensis (Moench) from subtropical India. Acta Pha-

raceutica Scienica 52, 19-22

Verna R, Verma R, Chauhan A, Yadav A (2010b) Changes in the essential oil composition of Majorana hortensis in India, cultivated in India during plant
togency. Journal of the Serbian Chemical Society 75, 441-447

Razik KA, Omer EA, Pérez-Alvarez JA (2010) Chemical composition and
antioxidant and anti-fisteria activities of essential oils obtained from some
Egyptian in tomato. Journal of Agricultural and Food Chemistry 58, 9063-9070

Wei A, Shibamoto T (2007) Antioxidant activities and volatile constituents of

various essential oils. Journal of Agricultural and Food Chemistry 55,

1737-1742

their components. Natural Product Research 24, 140-151

Medicinal and Aromatic Plant Science and Biotechnology 7 (1), 19-27 ©2012 Global Science Books

