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ABSTRACT 
Plants, being sessile, have developed a myriad of strategies to withstand the unavoidable stresses, which otherwise by no means can be 
escaped. These mechanisms involve complex cellular machineries operating in a web of signal transduction. Repertoires of genes are 
either up- or down- regulated during various phases of stress signaling, the understanding of whose regulation is still mesmerizing. In 
recent times, batteries of epigenetic mechanisms have been found to operate underneath the discovered roles of transcription factors and 
cis-elements. These epigenetic mechanisms involving DNA methylation, histone modifiers and ATP-dependent chromatin remodelers are 
the ones that directly influence the transcription of genes in eukaryotes. In the present review, the discovered and speculative roles of 
these epigenetic mechanisms in the regulation of stress responsive genes will be discussed and areas will be determined which needs to be 
focused in order to understand global stress specific gene regulation and to engineer better stress tolerant plants. 
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INTRODUCTION 
 
Proper growth and development, and successful completion 
of the life cycle of any organism are strongly dependent on 
its interaction with the external abiotic and biotic factors 
(Nevo 2011). When caught in hostile conditions, the orga-
nisms try to escape or trigger mechanisms to withstand the 
inevitable. The second option remains as the only choice in 
case of the sessile plants. In such a case, the signal of stress 
is carried to the genome of the organism causing changes in 
its expression map (Chinnusamy et al. 2004). The transcrip-
tional changes leading to altered transcriptome have often 
been found to be associated with epigenetic mechanisms. 
Recent works have highlighted that understanding the epi-
genetic regulation of stress-responsive genes is extremely 
important to engineer tolerance in relatively stress sensitive 
crop plants. 

Although in strict sense epigenetics refers to DNA 
sequence independent heritable changes in gene expression 

(Berger et al. 2009), most stress-responsive variations in 
gene expression are transient and reversible yet involve 
similar mechanism as observed for a true epigenetic inci-
dence. Nevertheless, in few cases inheritance of such inci-
dences, mitotically or meiotically have been observed (dis-
cussed later). Heritable or inheritable, broadly the epi-
genetic regulation of gene expression operates via changes 
in DNA methylation, nucleosome positioning and histone 
post-translational modifications, together, which modulate 
the chromatin structure. Each plant has repertoire of factors, 
many of which operate in unison to bring these changes in 
the genome globally or at distinct loci under stress. How 
and when these factors are recruited to various loci in the 
genome presently appears most interesting in understanding 
the mechanism of epigenetic regulation of stress response 
along with its effect on maintaining the genome stability 
and reshaping of gene expression pattern under adverse 
conditions. 

In this review, the discovered stress specific epigenetic 
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factors and their roles in the stress signaling pathway has 
been surveyed to validate the present status of our know-
ledge in this field. Several gaps in our understanding still 
needed to be plugged to complete the required knowledge 
to engineer increased stress tolerance in crop plants. 
 
ROLE OF ATP-DEPENDENT CHROMATIN 
REMODELING COMPLEXES IN STRESS SENSING 
AND RESPONSE 
 
The enzyme complexes involved in displacement of a 
nucleosome over a particular stretch of DNA sequence 
consumes the energy of ATP hydrolysis and hence, are 
called ATP-dependent chromatin remodeling factors (Cairns 
1998; Imbalzano 1998; Varga-Weisz and Becker 1998). 
These multi subunit ATP-dependent complexes have a 
SNF2 (SUCROSE NON-FERMENTING 2) like family of 
DEAD/H ATPase (sharing homology to helicases) as their 
catalytic centre (Eisen et al. 1995; Peterson and Workman 
2000). Based on the type of SNF2 like ATPase, five most 
important class of these chromatin remodeling complexes 
are SWI/SNF (ATPase contains a bromodomain; move 
nucleosome in trans or in cis), ISWI (ATPase contains a 
SANT domain; assemble nucleosome and increased chro-
matin stability), CHD1 (contains chromodomain and DNA 
binding motif), INO80 (ATPase domain split in two; 
possess DNA helicase activity due to inclusion of RuvB; 
involve in DNA repair) and SWR1 (ATPase domain split 
into two domain; swaps H2A with H2A.Z). 

Homologues of SNF2 like ATPases are found almost in 
all plants for which genomic and cDNA sequences are 
available. Four genes in Arabidopsis, and six in poplar have 
been classified as SWI2/SNF2 subfamily of transcriptional 
co-regulator (http://www.chromdb.org; Verbsky and 
Richards 2001; Kwon et al. 2005). The presence of higher 
number of such factors in plant than metazoan genomes 
indicates that these ATPases might have more specific as 
well as redundant roles in plants. Redundant function of 
these ATPases was hypothesized by the finding that muta-
tion in one of the SNF2 ATPase is lethal in Drosophila but 
viable in Arabidopsis like mutants of Arabidopsis thaliana 
BRHAMA (AtBRM) and SPLAYED (AtSYD; Bezhani et al. 
2007). However, of the total number of Arabidopsis genes 
(~1% of all genes) regulated by AtSYD and AtBRM, only 
20% were common between these two chromatin remodeler, 
indicating each has some specific function to perform. More 
recently, AtSYD has been shown to regulate the expression 
of selected genes downstream to jasmonic acid (JA) and 
ethylene (ET) signaling under biotic stress (Walley et al. 
2008). It was further demonstrated that AtSYD was directly 
targeted to the promoters of cMYC and NSP2. Another 
chromatin remodeling complex AtCHR12 has been shown 
to cause growth retardation under abiotic stress by bringing 
changes to the expression of dormancy related genes (Mlyr-
narova et al. 2007). Plants mutant for AtCHR12 were found 
to be similar to wild type plants under normal conditions, 
implying stress specificity of this gene. Mutation in 
PICKLE (PKL), A CHD3-type SWI/SNF ATPase, is known 
to exhibit the expression of early embryogenesis related 
genes like LEC1 and FUS3 during seed germination along 
with the formation of swollen roots filled with embryonic 
lipids (pickle roots) which can be reversed by exogenous 
gibberellic acid (GA3) application (Ogas et al. 1997, 1999). 
Although under normal condition pkl seeds and their ger-
mination rate were indistinguishable from those of wild 
type plants, higher ABI3 and ABI5 expression coupled with 
reduced silent chromatin marks (histone H3 lysine 9; H3K9 
and H3 lysine 27; H3K27 methylation) on these genes in 
addition to significantly delayed germination was inferred 
under low abscisic acid (ABA) abundance condition (Perruc 
et al. 2007). It is believed that via ABA-dependent signals, 
PKL would act to modulate a plant’s response to mild os-
motic stress by limiting ABI3 and ABI5 expression. Of the 
39 SNF2 domain-containing proteins in rice, 8 have been 
designated as SWI/SNF class of ATPase. Seven of these 

ATPases were found to be responsive to exogenous hor-
mones and stress treatments during expression analysis (Li 
et al. 2011). In Arabidopsis, mutation in MODIFIER OF 
snc1, 1 (MOS1) suppresses R gene SUPPRESSOR OF npr1-
1, CONSTITUTIVE1 (SNC1) due to alteration in DNA 
methylation. Interestingly, mutation in another SWI/SNF 
ATPase, DECREASE IN DNA METHYLATION 1 (DDM1) 
with proven nucleosome mobilization capacity, in mos1 
mutant background (ddm1/mos1), revives snc1 expression, 
indicating its role in biotic stress signaling (Li et al. 2010). 
DDM1 has been estimated to down-regulate in response to 
biotic stress (Ma et al. 2011). However, DDM1 was found 
to up-regulate under heavy metal stress in rice plants (Ou et 
al. 2012). The impact of DDM1 on global genome methy-
lation is discussed later in this review. One Mi2 class of 
ATPase was observed to accumulate under all tested stress 
conditions and hormone treatments in rice (Li et al. 2011). 
It can be hypothesized that in cereal crops also, the ATP-
dependent chromatin-remodeling complex does play a 
major role in controlling gene expression in response to 
various stresses through one or other hormonal signaling 
pathways. 

Apart from the SWI/SNF ATPase subunit, SUCROSE 
NON-FERMENTING 5 (SNF5) and SWITCH 3 (SWI3) 
have been observed to form the core-remodeling complex 
in yeast, Drosophila and human, which is known to re-
model chromatin in vitro (Phelan et al. 1999). In Arabi-
dopsis BUSHY (AtBSH) has been found as the homologue 
of yeast SNF5p, human INI1 and Drosophila SNR1. The 
ubiquitously expressed AtBSH gene has been observed to 
partially complement ySNF5p mutation in yeast partially 
but was unable to activate transcription like ySNF5p 
(Brzeski et al. 1999). Homologue of SNF5 in Pisum sati-
vum has been found to be functionally similar to the AtBSH 
gene at molecular level interactions. This PsSNF5 gene 
accumulates during later stages of embryo development and 
in response to ABA treatment and drought stress in germi-
nating seeds and vegetative tissues indicating its role in 
ABA-dependent abiotic stress response (Ríos et al. 2007). 
SWI3 proteins have been reported in Arabidopsis also. All 
the four Arabidopsis SWI3 genes (SWI3A-D) show dif-
ferential interaction with different SWI/SNF2 ATPases 
(Bezhani et al. 2007). The multiplicity of SWI3 genes in 
Arabidopsis supports that the SWI/SNF complexes are 
more specific in function in plants than their metazoan 
counterparts. SWI3B was first reported to interact with FCA 
(a RNA binding protein involved in floral development) and 
is involved in vegetative and reproductive growth and deve-
lopmental regulation (Sarnowski et al. 2002; Zhou et al. 
2003), indicating its role in sensing external environment. 
Recently, HYPERSENSITIVE TO ABA 1 (HAB1), a pro-
tein phosphatase 2C (PP2C) and also a component of ABA 
signaling pathway in Arabidopsis, was shown to interact 
with SWI3B (Saez et al. 2008). Mutation in AtSWI3B was 
found to exhibit reduced sensitivity to ABA-mediated inhi-
bition and was found to control the expression of genes like 
RAB18 and RD29B (Saez et al. 2008). 

Exchange of one variant of the histone with another 
type also appeared to be a potent mechanism to control 
gene expression. In recent time, incorporation of H2A.Z has 
been shown to play a major role in sensing the external 
environment. SWR1 and SRCAP complex are known to 
cause replacement of H2A with H2A.Z in yeast and human, 
respectively (Krogan et al. 2003; Mizuguchi et al. 2004; 
Cai et al. 2005). Mutation in PHOTOPERIOD INDEPEN-
DENT EARLY FLOWERING 1 (PIE1; homologue of 
ySWR1 ATPase), ACTIN RELATED PROTEIN 6 (ARP6; a 
subunit of SWR1 complex) and SERRATED AND EARLY 
FLOWERING (SEF; homologue of ySWC6 subunit of 
SWR1 complex) was found to cause early flowering in 
Arabidopsis by down-regulation of FLORAL LOCUS C 
(FLC), a phenotype also known to result from elevated 
environmental temperature (Deal et al. 2005; Martin-Trillo 
et al. 2006; Choi et al. 2007; March-Diaz et al. 2007). It has 
been shown that PIE interacts with H2A.Z, and PIE and 
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ARP6 are required to deposit H2A.Z at FLC locus (March-
Diaz et al. 2008). In the same work, it was further observed 
that 65% of the genes misregulated in H2A.Z Arabidopsis 
mutant (hta9/hta11) were also mis-regulated in pie1 and sef 
mutants. This group was found to include genes related to 
salicylic acid (SA)-dependent immunity and the mutants 
displayed enhanced tolerance to phytopathogenic bacteria 
Pseudomonas syringae cv. tomato. ARP6 was also shown to 
be necessary for deposition of H2A.Z at a number of Pi 
starvation genes (Smith et al. 2010). However, H2A.Z was 
predicted not to function at least as an activator of trans-
cription as many phosphate starvation response genes were 
de-repressed in arp6 mutant. Also, H2A.Z occupancy was 
found to be antagonistic to DNA methylation and hence was 
supposed not to be involved in long term gene silencing 
(Zilberman et al. 2008). Genes responsive to elevated tem-
perature conditions, irrespective of whether up- or down-
regulated, were found to be enriched in H2A.Z occupancy 
under non-inductive condition and evidences suggested that 
it keeps the DNA methylation-free but tightly wrapped 
around the nucleosome, rendering the DNA inaccessible to 
transcription activators or repressors (Kumar and Wigge 
2010). However, its eviction under inductive condition 
generates thermosensory response in Arabidopsis as the 
DNA become free to interact with various factors. In con-
trast, very recently, it was observed that H2A.Z was not 
evicted from ethylene-inducible genes in Arabidopsis, even 
under inducible conditions (Hu et al. 2011). Interestingly, in 
hta9/hta11 mutant plants, induction of ethylene responsive 
genes was not observed. In summary, it can be inferred 
whether evicted or not, H2A.Z keeps the genes ready to 
response under their inducible condition. 

Of the three-linker histones encoded by Arabidopsis 
genome, HIS1-3 is up-regulated in root meristem and elon-
gation zone by drought and ABA treatments (Ascenzi and 
Grant 1997, 1999). Its expression reduces in ABA insen-
sitive mutant abi1 and increases in ABA RESPONSIVE 
ELEMENT BINDING 1 (AREB1) factor overexpressing 
plants (Ascenzi and Grant 1997; Fujita et al. 2005). In 
tomato also, HIS1-S was found to up-regulate in response to 
drought and ABA treatments and be associated with the 
chromatin of wilted leaf cells (Scippa et al. 2000). HIS1-S 
antisense transgenic plants were shown to exhibit higher 
rate of stomatal conductance and transpiration, resulting in 
faster decrease in relative water content (Scippa et al. 2004). 
These results revealed the presence of stress specific HIS1 
variants in plants. Over all, it appears that ATP-dependent 
chromatin remodeling complex does play a major role in 
sensing and response to various biotic and abiotic stresses. 

 
ROLE OF HISTONE CHAPERONS IN STRESS 
RESPONSE 
 
Histone chaperons are known to play major role in nucleo-
some assembly and disassembly in eukaryotes. Nucleosome 
Assembly Protein 1 (NAP1) is highly conserved in eukary-
otes. Of the four AtNAP1 genes, AtNAP1;1, AtNAP1;2 and 
AtNAP1;3 exhibit hypersensitive response to UV-C treat-
ment in Arabidopsis (Liu et al. 2009a). Moreover a C-ter-
minal deletion of 34 amino acids in AtNAP1;3 was ob-
served to cause ABA-hypersensitivity and lower tolerance 
to salt stress. Thus, apart from ATP-remodeling complexes, 
histone chaperons are also indispensible in hormone and 
stress signaling pathways. 
 
ROLE OF HISTONE MODIFIERS IN STRESS 
SIGNALING 
 
Post-translational modifications of histones had been the 
center of attraction of transcriptional regulation of genes in 
all eukaryotes since the discovery and elucidation of the 
role of histone acetylation in gene regulation (Allfrey et al. 
1964). Histones are now known to get modified in a variety 
of ways including acetylation, methylation, phosphorylation, 
ubiquitination, glycosylation, ADP-ribosylation, carbonyla-

tion and sumoylation at N-terminal region. The various 
combination of modification within a nucleosome carries 
specific information about the regulation of genes and has 
been termed as “Histone code” and the effect also depends 
on the position of nucleosome in the gene (Jenuwein and 
Allis 2001). Histone modification in plants regulates gene 
expression in response to diverse exogenous stimuli in-
cluding stress (abiotic and biotic), temperature, light and 
also to endogenous signals operating in pathways of growth, 
development and differentiation (Fuchs et al. 2006; Pfluger 
and Wagner 2007). Most of the studies of histone modifica-
tion in plants have been done on Arabidopsis but recently 
some work has been done in rice, maize and few other crop 
plants as described below. 

The acetylation of lysine (K) residues (an undisputed 
mark of active genes in all eukaryotes) are known to be 
mediated by bromodomain containing histone acetyltrans-
ferases (HATs), the mammalian homologues of which, like 
GCN5/HAG1 (belonging to GNAT family), HAC1 and 
HAC12 (belonging to CBP/p300), and HAF2/TAF1 (belon-
ging to TAFII family), have been discovered in plants 
(Bharti et al. 2004; Benhamed et al. 2006; Long et al. 2006; 
Mao et al. 2006; Han et al. 2007). Similarly, the acetyl 
group removing histone deacetylases (HDACs) like 
AtHDA19 and AtHDA6 (belonging to RPD3 family), 
AtHD2A, AtHD2B and AtHD2C (belonging to plant spe-
cific HD2 family), and OsSRT1 and AtSRT2 (belonging to 
NADH-dependent Sir2 family) have been characterized 
from plant systems (Benhamed et al. 2006; Ueno et al. 
2007; Huang et al. 2007; Wang et al. 2010). 

Arabidopsis HAC1 has been found to be necessary for 
transcriptional up-regulation of heat shock gene HSP17 
(Bharti et al. 2004). The cold inducible transcription factor 
CBF1 recruits GCN5 containing complex via ADA adapters 
in Arabidopsis (Mao et al. 2006). Mutation in ADA2B 
makes plants hypersensitive to salts with reduced acetyla-
tion of histone H3 and H4 at COR6.6, RAB18 and RD29b 
(Kaldis et al. 2011). However, ada2b-1 but not gcn5-1 
mutant of Arabidopsis was more resistant to freezing stress 
(Vlachonasios et al. 2003). Of the total genes affected, 
nearly half were similar in both these mutants. It can be 
understood that these two proteins might not function 
together always as they have both redundant and specific 
functions. Arabidopsis mutants of elongator histone acetyl-
transferase complex (elp2, elp6, elp4/elo1 and elp1/abo1/ 
elo2) exhibit ABA-hypersensitivity and increase tolerance 
to oxidative stress and CsCl (Zhou et al. 2009). Interes-
tingly, mutation in core subunits (elp1/abo1 and elp2) of 
elongator complex but not in accessory complex subunits 
(elp4/elo1 and elp6) shows super sensitivity in stomatal 
closure in response to ABA. In elo mutants, genes of JA and 
ethylene signaling were up-regulated (Nelissen et al. 2010). 
ELP2 is also needed for faster and timely immune response 
against the hemibiotrophic pathogen Pseudomonas syringae. 

Like HATs, HDACs have been observed to have 
specific roles under stress in plants. AtERF7, which plays a 
vital function in ABA signaling and drought stress response, 
has been suggested to recruit HDA19 via its interaction 
with HDAC complex subunit SIN3 (Song et al. 2006). 
Mutation in HDA19 was found to cause down-regulation of 
ABI1, ABI2, KAT1, KAT2 and RD29B resulting in hyper-
sensitivity to ABA and NaCl in Arabidopsis (Chen and Wu 
2010). HDA19 is also reported to get up-regulated by JA 
and ET and control the expression of ERF1 and genes en-
coding PR proteins (Zhou et al. 2005). Interestingly, 
HDA19 has also been shown to repress salicylic acid-
mediated signaling pathway in Arabidopsis (Choi et al. 
2012). Thus, it was suggested to involve in maintaining 
optimum growth of the plants by regulating the basal 
expression level of genes of SA-response pathway under 
unstressed condition and their overstimulation under biotic 
stress. Mutation in another RPD3-type HDAC, is also 
known to cause ABA- and salt-hypersensitivity because of 
down-regulation of ABA- and salt responsive genes like 
ABI1, ABI2, KAT1, KAT2, DREB2A, RD29A, and RD29B 
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(Chen et al. 2010). HDA6 has been suggested to be in-
volved in JA mediated plant defense by interacting with a 
F-box protein COL1. Owing to the similarity in roles, 
redundant functionality for HDA19 and HDA6 has been 
postulated (Tanaka et al. 2008; Chen and Wu 2010). More-
over, it appears that both these genes might be involved in 
deacetylation of repressor(s) of ABA-responsive stress 
inducible genes. In Arabidopsis, AtHD2C, a HD2-type 
HDAC is repressed by ABA (Sridha and Wu 2006). Its 
overexpression was found to manifest ABA-insensitive 
phenotype with the down-regulation of ABI2, ADH1, SKOR, 
KAT1 and KAT2 in Arabidopsis. However, increased tol-
erance to salt stress was observed in transgenic plants along 
with higher expression of LEA and reduced sensitivity to 
high-osmolarity. Another HD2-type HDAC, HDT107 (a 
histone H4 deacetylase), has been shown to negatively 
regulate the innate immunity in rice by modulating the 
transcription of pattern recognition receptor and defense 
related genes (Ding et al. 2012) Mutation in a human 
transducin beta-like WD40-repeat protein HOS15 have 
been observed to cause Arabidopsis plants hypersensitive to 
cold stress specifically (Zhu et al. 2008). Hence, it can be 
inferred that plants do have specific chromatin remodelers 
to function under specific conditions. Apart from Arabidop-
sis, in crop plants also, roles of specific histone acetylase 
and deacetylase have been postulated. In cereal crops like 
Hordeum vulgare stress hormones responsiveness of many 
HATs and HDACs have been observed (Demetriou et al. 
2009, 2010). In rice, many HDACs were found to up-
regulate in response to stresses like salt, cold and high 
osmolarity and exogenous application of hormones like 
ABA, JA and SA (Sharma et al. 2009). Overexpression of 
OsSRT1, a Sir2-like HDAC, enhanced tolerance to oxida-
tive stress in rice while siRNA-mediated down-regulation 
leads to high H2O2 accumulation, DNA fragmentation, cell 
death and lesions similar to hypersensitive responses as 
observed during incompatible plant-pathogen interactions 
(Huang et al. 2007). It can be concluded that different HATs 
and HDACs have specific role to play under different set of 
conditions in plants. 

 The methylations of lysine and arginine residues are 
achieved mainly by SET-domain containing histone methyl-
atransferases (HMTs). SuvH group of proteins are respon-
sible for transcription repressive H3 lysine9 (K9) methyla-
tions in Arabidopsis while the H4 arginine (R) methylations 
are mediated by protein arginine methyltransferases 
(PRMTs) (Jackson et al. 2004; Naumann et al. 2005; Ebbs 
and Bender 2006; Pei et al. 2007). Mutation in PRMT5 
(required for transcription repressive H4R3 symmetric di-
methylation, H4R3sme2) homologue in Arabidopsis, Shk1 
kinase binding protein1 (SKB1), is known to exhibit salt 
hypersensitivity with reduced H4R3sme2 at FLC locus 
(Zhang et al. 2011). Heterochromatin specific H3 Lysine 27 
(K27) methylations are mediated by E(Z) class of HMTs 
(PcG complex; Ng et al. 2007). WD-40 repeat proteins 
FERTILIZATION INDEPENDENT ENDOSPERM (FIE) 
and MULTICOPY SUPPRESSOR OF IRA1 (MSI1) are a 
part of polycomb group (PcG) complex. Arabidopsis msi1 
mutants were found to exhibit increased transcription of 
stress- and ABA-responsive genes accompanied by in-
creased tolerance to dehydration (Alexendre et al. 2009). In 
barley HvE(Z) and HvFIE expression was found to increase 
in response to ABA treatment (Kapazoglou et al. 2010). 
Genes encoding SET domain proteins have been identified 
in rice also (Thakur et al. 2003; Qin et al. 2010). However, 
their stress responsiveness is yet to be studied. Arabidopsis 
loss-of-function mutant sdg8-1 (set domain group 8) ex-
hibits reduced resistance to the necrotrophic fungal patho-
gens Alternaria brassicicola and Botrytis cinerea with 
reduced level of transcription promoting H3 lysine 36 
(H3K36) di- and tri-methylations not only at JA/ET sig-
naling pathway defense genes but also in global histone 
extracts (Berr et al. 2010). Mutation in Arabidopsis thali-
ana TRITHORAX 1 (ATX1), required for active gene spe-
cific H3 lysine4 (H3K4) tri-methylation (Ding et al. 2011) 

was shown to decrease tolerance to dehydration stress with 
larger stomatal aperture and reduced expression of NCED3, 
a gene involved in ABA biosynthesis. Changes in H3K4 
methylation and H3 acetylation has been observed in sub-
mergence inducible genes in rice also (Tsuji et al. 2006). 
The mono-ubiqitination of H2B Lysine 143 (K143), the 
only known site in plant for this modification, is established 
by Ring-type E3 ligase like HUB1 and are removed by 
deubiquitinases like SUP32/26 (Liu et al. 2007; Sridhar et 
al. 2007). The methylations from histone residues are 
removed by JmjC-domain and LSD1-type HDMs (histone 
demethylases) or by a process involving deimination (Ber-
ger 2007; Kouzarides 2007). However, the role of these fac-
tors in plant stress signaling is yet to be reported. Apart 
from phosphorylation at H3S10 and H3S28, which are 
found in other eukaryotes also, H2T11 is also phosphory-
lated in plant nucleosomes (Pfluger and Wagner 2007). 
Induction of genes in response to abiotic stresses in the 
tobacco BY2 cell cultures and in Arabidopsis cells has been 
observed to be associated with rapid increase in H3S10 
phosphorylation and immediately followed by increase in 
H3 phosphorylation and H4 acetylation. From the data 
obtained so far, it appears that histone modifiers are major 
switches in regulation of stress responsive genes. 

 
SMALL RNA-MEDIATED EPIGENETIC 
REGULATION OF STRESS RESPONSE 
 
Small RNAs initially discovered as a strong weapon for 
post-transcriptional gene silencing, were uncovered to have 
potential role in transcriptional gene silencing as mediator 
of genome locus specific DNA methylation and histone 
modification. In plant, the four major species of small RNA 
includes micro RNAs (miRNAs), transacting siRNAs (ta-
siRNAs), heterochromatic siRNA (hc-siRNA) and natural-
antisence siRNA (nat-siRNA). Stress related miRNAs were 
first identified in small RNA libraries of Arabidopsis seed-
lings exposed to various stresses (Sunker and Zhu 2004). 
miRNAs like miR393, miR397b and miR402 were ob-
served to accumulate under salt, drought and cold stresses 
and ABA treatments. miR402-Overexpressing plants were 
found to target DNA demethylase DML3, indicating its 
indirect role in controlling DNA methylation under abiotic 
stresses (Kim et al. 2010). In crops like rice, dehydration 
induced miR169g and salinity induced miR169n, both tar-
geting stress down-regulated NF-YA was identified (Zhao et 
al. 2007). The promoters of the miRNAs were found to 
have cis-elements responsive to stress like DRE and ABRE. 
Incidences of hormonal regulation of miRNA have been 
documented like positive and negative regulation of 
miR319 (targeting TCP-domain proteins) in rice by GA and 
ABA, respectively (Liu et al. 2009b). By genome-wide pro-
filing, eight up-regulated and 11 down-regulated miRNAs 
were discovered in drought stressed rice plants (Zhou et al. 
2010). In response to cold, miRNAs belonging to 10 and 5 
different families of miRNA were found to up- and down-
regulate in rice, respectively (Lv et al. 2010) Comparable 
numbers of abiotic and biotic stress responsive miRNA 
were also discovered in other monocots like wheat maize, 
and Brachypodium (Zhang et al. 2009; Yao et al. 2010; 
Kantar et al. 2011). Of the 40 novel stress induced miRNAs 
in rice indica variety, many were similar for salt stress and 
tungro virus infection, suggesting a vital role of miRNAs in 
crosstalk between abiotic and biotic stress signaling path-
ways (Sanan-Mishra et al. 2009). 

Although, miRNAs appears to play important role in 
stress signaling, siRNA species, specially the hc-siRNA are 
expected to directly regulate the epigenetic mechanisms 
controlling stress response. Several stress responsive endo-
genous siRNA were also discovered in small RNA libraries 
of Arabidopsis (Sunkar and Zhu 2004). Among these a 24-
nt nat-siRNA against a pair of cis-antisense transcript 
PYROLINE-5-CARBOXYLASE DEHYDROGENASE 
(P5CDH; sense) and SRO5 (antisense) resulting in the 
cleavage of P5CDH (which also generates 21-nt siRNA) 
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and accumulation of osmoprotectant proline (Borsani et al. 
2005). Abiotic stress responsive siRNA were also detected 
in rice (Yan et al. 2011). Down-regulation of siR441 and 
siR446 was observed in response to ABA treatment and 
various abiotic stress and knockdown of these siRNA 
results in decreased stress tolerance. In genome-wide analy-
sis of intraspecific hybrids and their parents of Arabidopsis, 
marked differences in 24-nt siRNA levels were observed 
(Groszman et al. 2011). This resulted in alteration in methy-
lation levels and increased stress tolerance in the hybrid, 
indicating direct role of 24-nt siRNA in epigenetic response 
to environmental stress. Recent evidences suggest more 
interesting roles of siRNAs in epigenetic mechanism in-
volved in plant stress signaling pathway, which is discussed 
later in this review. 

 
ROLE OF DNA METHYLATION IN STRESS 
RESPONSE 
 
The cytosine residue in the DNA is found to be methylated 
at fifth position in fungi, plants and mammals but not in 
Drosophila, yeast and Coenarhabitis elgans. Although the 
5-methyl cytosine (5mC) is not synthesized as a separate 
base, it is sometimes coined as “fifth base of DNA”, owing 
to its huge negative impact on gene regulation (Pennings et 
al. 2005). In spite of being studied for decades, mystery of 
mechanism of its establishment and removal, and way to 
control gene expression is not yet solved completely. DNA 
methylation imparts its effect by changing the chromatin 
structure and histone modification, bringing a change in 
DNA bending capacity, creating sites for 5mC binding 
protein (sequence specific and non-specific), removing the 
non-5mC DNA binding transcription factors, and inhibiting 
RNA polymerase elongation as reported from Neurospora 
(Rountree and Selker 1997; He et al. 2001). Apart from 
cytosine methylation on symmetric CpG residues like in 
animals, it is also present on symmetric CpNpG residues 
and asymmetric CpNpN residue in plants (Finnegan et al. 
1998; Bender 2004). The CpG and CpNpG methylation are 
involved in genomic imprinting (Holliday and Pugh 1975; 
Riggs 1975; Bender 2004). On the other hand the asym-
metric DNA methylation, which mainly occurs as a result of 
RNA-directed DNA methylation, has to be re-established de 
novo after each cycle of replication (Ramsahoye et al. 2000; 
Gowher and Jeltsch 2001). The CG methylation has been 
found to have a larger effect on global methylation and 
works in silencing of the heterochromatic region and trans-
posons of the plants. A global loss of CG methylation along 
with release of transcriptional silencing of a number of 
transposons and heterochromatic repeats (centromere and 
pericentromeric sequences) was observed in mutants 
affecting CG methylations in Arabidopsis (Kato et al. 2003; 
Lippman et al. 2003; Mathieu et al. 2003; Lippman et al. 
2004; Zhang et al. 2006; Zibberman et al. 2007). The CNG 
methylation has been found to be associated with many 
transposable elements (Zhang et al. 2006; Zibberman et al. 
2007) but only a few transposons were transcriptionally 
activated in mutants affecting CNG methylation though 
there was a significant decrease in CNG methylation glo-
bally (Tompa et al. 2002; Matheu et al. 2005; Vaillant et al. 
2006). It has been concluded that probably CNG methy-
lation is involved in fine-tuning the regulation on transposa-
ble elements (Vaillant and Paszkowski 2007). Similar 
genome wide and mutant studies have revealed that asym-
metric CNN methylation is involved in locus specific regu-
lation of transposons, transgenes and endogenous genes 
(Gong et al. 2002; Agius et al. 2006; Morales-Ruiz et al. 
2006; Penterman et al. 2007). 

Though being hypothesized for a long time, the first 
concrete evidence of modulation of DNA methylation by an 
external stimuli was obtained by the observation of cold 
induced demethylation of nucleosomal core DNA in roots 
and hypomethylation of ZmM11 gene (that contain a retro-
transposon-like sequence) in maize (Steward et al. 2000, 
2002). Hypomethylation is also observed for stress related 

genes in tobacco mutant for MET1 (Wada et al. 2004). 
Reduction in CG methylation in coding region of NtGDPL 
along with its induction was observed in tobacco in res-
ponse to high salt, low temperature, and aluminium. Activa-
tion of transposons and retrotransposons due to loss of DNA 
methylation like Tos17 in rice, Ttol and Tnt1 in tobacco, 
Tam3 in Antirrhinum etc. in response to abiotic stresses due 
to hypomethylation have also been documented (Hirochika 
et al. 1996; Takeda et al. 1999; Beguiristain et al. 2000; 
Hashida et al. 2003, 2006). The hypomethylation and de-
methylation events may be needed for reshaping the 
genome (mainly via the activation of transposons) of the 
organisms in order to adapt to the changing environment as 
suggested by Barbara McClintock decades ago (McClintock 
1984) and pointed out in some recent reviews (Boyko and 
Kovalchul 2008). 

CpNpG-hypermethylation of CCWGG sequences in a 
satellite DNA in response to salt stress has been reported in 
facultative halophyte Mesembryanthemum crystallinum, 
which switches from C3-photosynthesis to CAM meta-
bolism (Dyachenko et al. 2006). In this case, CCWGG 
sequence was not found to be hypermethylated in the pro-
moter region of CAM pathway enzyme phosphoenol-
pyruvate carboxylase and hence, it was suggested that 
specific hypermethylation of the satellite DNA may be 
needed to form specialized chromatin structure to regulate a 
large set of gene and adapt to the changed environment and 
metabolism pattern. A methylation sensitive amplified poly-
morphism (MSAP) in wheat indicated CCGG sequences in 
salt-tolerant Deiking-961 were more methylated than 
sensitive Lumai-15 variety in response to salt stress (Zhong 
et al. 2009). In both the varieties genome wide hypomethy-
lation along with many hypermethylated regions was ob-
served. Similar results were also obtained by MSAP analy-
sis in rice under drought stress (Wang et al. 2011). The 
drought responsive alteration in DNA methylation was 
observed to be dependent on the rice variety, tissue type and 
developmental stage and nearly 30% of these alterations 
were irreversible. The variety and tissue-type specific 
alteration in DNA methylation was also observed under salt 
stress in rice (Karan et al. 2012). However, these variations 
were found not to correlate with the salinity tolerance level 
of the rice varieties. In almost all the studies done till date, 
as exemplified by few aforementioned cases, stress induced 
genome wide hypomethylation has been found to be ac-
companied by locus specific hypermethylation. 

Plant DNA methyltransferases (DNA mtase) are cate-
gorized broadly into Group I or DNMT/MET DNA mtase 
(responsible for CG methylation), Group II or Chromo-
methylases (CMT; responsible for CNG methylation) and 
Group III or Domain Rearranged Methyltransferases 
(DRMs; responsible for asymmetric CNN methylation) 
(Boyko and Kovalchuk 2008). Although nothing is known 
about the specific role of different DNA mtase in stress 
signaling, analysis of ten of these enzymes in rice identified 
OsCMT2 as cold and salt inducible and OsCMT3 as drought 
and salt inducible (Sharma et al. 2009). 

Demethylation of DNA is mediated by DNA glyco-
sylase/lyase. These enzymes generally cause excision of 5-
methylcytocine base and introduction of a nick in the DNA 
backbone (Zhu et al. 2000, 2007). The DNA repair mecha-
nism then add an unmethylated cytosine. The behavior of 
the plant DNA glycosylases under stress is yet to be repor-
ted. In one instance, stress mir402 was found to target 
REPRESSOR OF SILENCING 1/DEMETER-LIKE 3 pro-
tein (ROS1/DML3) in Arabidopsis (Kim et al. 2010). 

 
RECRUITMENT OF CHROMATIN REMODELING 
FACTORS AND INTERRELATION BETWEEN 
DIFFERENT EPIGENETIC EVENTS 
 
Cytosine methylation has been reported to cause structural 
transition of DNA from B- to Z- and A-form (Tippin and 
Sundaralingam 1997; Rich and Zhang 2003). Z-form of the 
DNA is incompatible with nucleosome formation (Nickol et 
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al. 1982; Garner and Felsenfeld 1987). From various evi-
dences, it is now suggested that DNA methylation can affect 
nucleosome formation and positioning if 5mC exocyclic 
group come in such a position that it causes steric inter-
ference with the path of DNA in the nucleosome (Wang and 
Griffith 1996; Godde et al. 1996; Davey et al. 1997; Pen-
nings et al. 2004). 

Many ATP-dependent chromatin-remodeling factors 
have been shown to control DNA methylation in plants. The 
most studied of them is DDM1, which has been suggested 
to control DNA methylation directly or indirectly by bring-
ing changes in the histone modifications at transposons and 
repeat regions of the genome in Arabidopsis (Johnson et al. 
2002). Apart from global hypomethylation resulting in 
ddm1 mutants of Arabidopsis, hypermethylation of certain 
genic loci is also reported (Saze and Kakutani 2007). ddm1 
plants have been found to be more sensitive to UV-C, �-
irradiation, methyl methane sulfonate and NaCl (Shaked et 
al. 2006; Yao et al. 2012). Recently, in rice two genes, 
similar to DDM1 of Arabidopsis, have been discovered 
(Higo et al. 2012). In the same study, hypomethylation of 
the genome in transgenic rice plants expressing antisense 
DDM1a gene was also observed. It has been suggested that 
DDM1 might facilitate the localization of 5mC binding 
domain proteins (MBDs) at specific nuclear domains 
(Zemach et al. 2005). 

Like ddm1 plants, mutants for DNA glycosylase ROS1 
also shows hypermethylation at certain genic loci like 
BONSAI (BNS), SUPERMAN (SUP) and AGAMOUS (AG) 
in Arabidopsis (Jacobsen et al. 2000; Saze and Kakutani 
2007). In fact, frequent occurrence of ectopic DNA hyper-
methylation in global hypomethylation background has 
been observed in many other instances. met1, Arabidopsis 
mutant for a DNA methyltransferase, also shows the same 
phenomenon (Mathieu et al. 2007; Reinders et al. 2008). In 
ddm1 Arabidopsis mutants, the BNS loci, which is flanked 
by non-LTR type retrotransposons (LINE), get hypermethy-
lated while the LINE sequence get hypomethylated upon 
repeated self-pollination. ddm1 plants lacking this LINE 
insertion at BNS locus does not show hypermethylation. 
Hence, it was predicted that the flanking transposons con-
trols the methylation of BNS locus. However, SUP and AG 
does not contain any transposons near to them, but still gets 
hypermethylated in ddm1 and met1 plants (Saze and Kaku-
tani 2007). Based on some recent evidences, it has been 
hypothesized that global hypomethylation triggers both 
inhibition of DNA methylation and de novo methylation by 
RdDM (RNA dependent DNA methylation) pathway, which 
leads to local hypermethylation of a number of loci (Mathi-
eu et al. 2007; Saze and Kakutani 2007; Saze et al. 2008). 

MAINTAINANCE OF METHYLTION1 (MOM1) that 
shares limited homology to DDM1 has been found to be 
involved in DNA methylation independent silencing of 
repetitive DNA sequences in Arabidopsis (Vaillant et al. 
2006). The release of transgene silencing and 5S repeat 
repression without alteration of DNA and histone methyla-
tion patterns (Amedo et al. 2000; Vaillant et al. 2006) 
clearly depicts the existence of methylation-dependent as 
well as methylation-independent pathways of epigenetic 
silencing. Curiously, in Arabidopsis, activation of many 
repeat regions in response to prolonged heat stress was 
found to occur without DNA demethylation, almost in-
dependent of histone modification but completely depen-
dent on nucleosome eviction and heterochromatin decon-
densation (Pecinka et al. 2010). 

Second messengers like inositol phosphates have been 
shown to play direct recruitment of chromatin remodeling 
complexes in yeast genome. IP6 was reported to inhibit the 
nucleosome mobilization by yeast ISW2 containing NURF 
chromatin remodeling complex, whereas IP4 was found to 
cause SWI/SNF mediated nucleosome displacement in in 
vitro experiments (Shen et al. 2003). In vivo, IP4 and IP5 
were responsible for nucleosome mobilization by INO80 
and SWI/SNF complexes on promoter of PHO5 gene under 
inductive conditions (Stegar et al. 2003). Although, mecha-

nism of direct recruitment of epigenetic and chromatin 
remodeling factors to the DNA of plant genome is yet to be 
reported, in one incidence PI-5-P was found to re-localize 
ATX1 (a histone trimethyltransferase) from nucleus to cyto-
plasm in Arabidopsis (Alvarez-Venegas et al. 2006). 

DNA methylation is closely linked to heterochroma-
tization and gene silencing. In heterochromatin the histones 
H3 and H4 are found to be hypoacetylated, dimethylated at 
K9 and K27 positions of H3 and hypomethylated at K4 
position of H3 (Bender 2004). It was shown that loss of 
methylation in met1 mutants of Arabidopsis is associated 
with loss of H3K9 dimethylation. However, in mutants for 
KRYTONITE (KYP; histone methyl transferase), loss of 
H3K9 methylation is not associated with loss of CpG DNA 
methylation, indicating, H3K9 methylation occurs down-
stream to CpG DNA methylation (Jasencakova et al. 2003). 
However, some loss of CpNpG methylation was observed 
in kyp mutants (Jackson et al. 2002). Also, proteins like 
HP1 bind to H3K9 methylations and helps in spreading of 
the DNA methylation (Lachner et al. 2001; Grewal and 
Maozed 2003). Again, the 5mC-Binding Domain Proteins 
(MBDs) have been shown to recruit enzymes that modify 
the histones (Ben-Porath and Cedar 2001). More recently, 
deubiqitination of H2B at K143 has been shown to be man-
datory for RdDM induced H3K9 dimethylation and DNA 
methylation at transgenes and transposons (Sridhar et al. 
2007). 

In Arabidopsis, COPIA elements are rich in CG-methy-
lation while SN1 is rich in non CG-methylation. Mutants 
with affected CG-methylation showed reduced H3K9 
dimethylation at AtCOPIA loci only whereas reduction in 
H3K9 methylation was observed at AtSN1 loci in mutants 
with affected non-CG methylation (although CG- and non-
CG methylations were affected at both the loci, respec-
tively; Lippman et al. 2003). It was demonstrated that SRA 
5mC-binding domains of KYP and SUVH6 (both involved 
in maintenance of dimethylation of H3K9) shows differen-
tial binding to CG- and non-CG-methylated DNA. Thus, the 
maintenance of H3K9 dimethylation could be maintained 
by different sets of protein at different locus, suggesting that 
the functional relationship of DNA and histone methyla-
tions is locus specific (Johnson et al. 2007). The control of 
gene silencing and H3K9 dimethylation by TOUSLED 
(TSL) and REPLICATION PROTEIN A2 (RPA2) in a 
DNA-methylation independent manner in Arabidopsis, sug-
gest that DNA methylation and histone modifications could 
be functionally distinguished also. 

 
EPIGENETIC MECHANISM IN MEMORISING THE 
RESPONSE TO STRESS EXPOSURE 
 
A primary exposure to stress is known to generate an en-
hanced and quicker response to subsequent stresses in 
plants. For example, an “immunological memory” of 
quicker and enhanced nicotine accumulation in Nicotiana 
sylvestris was demonstrated when the plants were pre-
treated with methyl jasmonate (MJ; Baldwin et al. 1996). 
Repeated exposure of Arabidopsis plants to ABA was found 
to impair light induced stomatal opening (Goh et al. 2003). 
These ABA-entrained plants also showed a transient in-
crease in the expression of RD22 and AtNCED3 and a tran-
sient increase in endogenous ABA level (Goh et al. 2003). 
Pretreated plants exposed to paraquat showed significantly 
enhanced recovery after 3 days (Ye and Gressel 2000). 
Arabidopsis plants primed with either osmotic or oxidative 
stress was suggested to alter Ca2+ responses during sub-
sequent stress exposure. Based on such reports, it is 
believed that a system to memorize the stress exposure does 
exist in plant system. As epigenetic mechanisms are an 
inherent part of the stress-signaling pathway, maintenance 
of this stress memory was thought to involve similar pro-
cesses (Bruce et al. 2007). In a recently concluded work, it 
was observed that in acibenzolar S-methyl-treated or patho-
gen infected distal leaves of Arabidopsis, chromatin modi-
fication such as increase in H3 and H4 acetylation and 
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H3K4 di- or tri-methylation increases in the promoters of 
many defense genes without any increase in transcription. 
However, an amplified gene response on exposure to 
subsequent stress was evident, indicating the role of histone 
post-translational modification in memorizing systematic 
acquired resistance in plant stress response (Jaskiweiz et al. 
2011). 

 
EPIGENETIC MECHANISMS IN 
TRANSGENERATIONAL MEMORY OF STRESS 
 
Studies on plants growing near the Chernobyl nuclear waste 
leakage areas suggested that these plants were better adap-
ted to radiation stress than those growing far away and this 
is accompanied by hypermethylation of the genome (Koval-
chuk et al. 2003, 2004) Thus, it was hypothesized that stress 
inducible epigenetic changes can be inherited by the pro-
genies of stressed plants and might be involved in adapting 
the plants to the changing environment. 

 The homologous recombination frequency (HRF) is 
known to get enhanced by heat, UV-B stress and flagellin 
treatment in plant (Ries et al. 2000). Using homologous 
recombination trap transgenic Arabidopsis lines harboring 
two partial but overlapping fragment of GUS gene, it was 
revealed that the HRF remained at an elevated level in the 
unstressed progenies of stressed transgenic plant as inferred 
by comparing the number of cells showing GUS histo-
chemical staining per progeny plant of stressed versus non-
stressed plants (Molinier et al. 2006). In the same work, it 
was inferred that this stress memory is passed to the pro-
genies through gametes of both male and female stressed 
plants. Trans-generational memory of increased HRF at dis-
ease resistance gene-like loci was also found in offspring of 
Tobacco mosaic virus (TMV)-infected plants with global 
genome hypermethylation and locus-specific hypomethyla-
tion (Boyko et al. 2007). In one of the tenth generation 
progeny line (line 2) of 5-aza-deoxycytidine (5-aza-deoxy-
cytidine) treated rice plants, DNA methylation was abol-
ished in the coding region of Xa21G gene encoding Xa21 
like protein (Akimoto et al. 2007). Increased HR frequency 
along with higher stress adaptability was also observed in 
direct progenies of salt, UV-C, cold, heat and flood stressed 
recombination trap line of Arabidopsis (Boyko et al. 2010). 
While 10-12% more hypermethylation was observed in the 
progenies of all except drought stressed plants, 15% more 
hypomethylation was observed in progenies of drought 
stressed plants. Inheritance of heavy metal stress induced 
CNG hypomethylation in the progenies of stressed rice 
plants has been recently reported (Ou et al. 2012). Muta-
tions impairing siRNA biogenesis, more specifically DCL2 
and DCL3 functions, has been shown to disrupt the trans-
fer of stress memory to next generation (Boyko et al. 2010). 
Although changes in DNA methylation status appeared as 
indispensable for trans-generational stress memory develop-
ment, in one report heritable changes in response to tem-
perature and UV-B stress was found to be mediated by 
histone occupancy and acetylations but not DNA methyla-
tion (Lang-Mladek et al. 2010). In another incidence, trans-
generational stress memory was hardly encountered in pro-
genies of a variety of chemicals treated and stressed plants, 
concluding this might not be a general response in Arabi-
dopsis and requires special conditions (Pecinka et al. 2009). 

Some interesting studies indicated that plants do 
possess an inherent mechanism to restrict “stress imprints” 
to the same generation as discussed below. In offspring 
devoid of ddm1 mutation that were obtained after ten gene-
rations of crossing ddm1 mutant to wild type Arabidopsis 
plants, the heritable hypomethylation effect of the mutation 
was abolished at all those loci for which a matching small 
RNA was discovered in the database (Teixeira et al. 2009). 
In plants compromised for these siRNA syntheses, the 
reversal in hypomethylation was not observed, implying the 
role of siRNA in blocking the passage of genome instability 
(due to hypomethylation) to the next generation. Recently, 
heat induced accumulation of ONSEN retrotranspososn 

transcripts and extra-chromosomal DNA was observed in 
vegetative tissues of Arabidopsis (Ito et al. 2011). Although 
ONSEN transcript and extra-chromosomal DNA gradually 
decayed over 20-30 days of stress recovery, a high fre-
quency of transposition was observed in progenies of 
stressed plants, which were deficient in siRNA biogenesis 
(Ito et al. 2011; Matsunaga et al. 2012). A careful analysis 
revealed that these retrotransposition events occurred 
during floral development before gamete formation. More-
over, ONSEN transcripts and DNA were observed at sig-
nificantly higher level in heat-stressed callus than in 
vegetative tissue, indicating these regulatory mechanisms to 
be cell specific (Matsunaga et al. 2012). Thus, an inherent 
siRNA pathway does exist in plants that checks stress 
specific retrotransposition events during gamete formation. 
With these evidences, the role of siRNA pathway is 
becoming clear, and still its mechanism to allow certain 
stress imprints to pass to next generation while more strin-
gently restricting others is a mystery. 

 
CONCLUSION 
 
Stress generates a complicated signaling cascade where 
epigenetic factors form complex knots. These epigenetic 
factors appear to play vital roles in sensing, responding and 
memorizing the stress effects. Genome wide analysis and 
detail characterization of regulation of stress-responsive 
genes indicate that most, if not all stress responsive genes 
are associated with at least one type of chromatin re-
modeling events. As these epigenetic factors bring about 
global changes in gene expression pattern, it appears that 
one or more of this complex acts together to synchronize 
the expression of large set of genes under various con-
ditions and developmental stages. Present knowledge 
indicates the role of stress hormones in controlling the 
activity or expression of these regulators. Conversely, a few 
of these regulators can also induce the synthesis of these 
hormones under stress. Evidences suggest that H2A.Z 
containing nucleosomes are most likely involved in sensing 
a pathogen attack or a change in the external environment. 
Although strong evidences are lacking, it can be postulated 
that this sensing mechanism can operate in response to 
hormonal signaling or change in the expression of genes 
associates with H2A.Z might lead to induced production of 
stress hormones. This H2A.Z-mediated sensing and/or the 
hormonal signaling may then generate a response effect at a 
global and locus-specific level, involving a chain of inter-
dependent epigenetic mechanisms. The most substantial 
outcome of these effects involve genome-wide global hypo-
methylation accompanied by locus specific hypermethyla-
tion, inhibition of growth-related genes and activation of 
stress-related genes along with various transposons. Recent 
evidences also indicate that some stress responsive epi-
genetic changes might get stored as stress imprint memories 
leading to enhanced secondary stress response. Astonishing 
though it may seem, many of these effects can be trans-
ferred to the next generation as trans-generational stress 
memory. The role of siRNA pathways in these cases is 
becoming increasingly clear, which appears to play a vital 
role during the transfer of memory of expression of stress 
related genes and hypermethylation events to the progenies 
of stressed plants while erasing the trans-generational 
memories of hypomethylation and transposition events. A 
schematic representation of this present understanding is 
shown in Fig. 1. 

A number of these factors have been discovered and 
with the advent of modern technologies a lot more will get 
uncovered soon along with their targets loci. This will 
further help in fine tuning our understanding about the role 
of these factors in plants response pathways to external cues 
and the manner in which they operate in a coordinated way 
under a given condition. However, understanding the 
mechanisms of recruitment of these factors appears more 
challenging and probably needs detailed mechanical analy-
sis of their biochemical functions. This might prove ex- 
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tremely helpful in targeting various stress specific chro-
matin remodeling complexes to the desired loci only. An 
acquaintance of detailed knowledge about the siRNA path-
way and its exact role in trans-generational memory transfer 
is also highly desirable and will help us to manipulate only 
chosen effects to be transferred to the progenies of stressed 

plants, thereby inhibiting the deleterious effects of ‘trans-
generation memory’ on growth and productivity of the 
plants. In short, few significant steps have been taken 
towards discovering the role of epigenetic mechanisms in 
stress response but there is still lot to be understood. 
 

 
Fig. 1 A schematic representation of broad possible role played by different epigenetic regulators. Exposure to stress is possibly sensed by H2A.Z 
containing nucleosomes. This possibly triggers changes in gene expression leading to induction of various stress hormone signaling pathways. Conversely, 
these stress hormones may also assist H2A.Z containing nucleosome in sensing the stress environment. The hormonal pathways lead to the induction or 
activation of various transcription factors or epigenetic regulators. A few of these epigenetic regulators are also reported to cause the synthesis of stress 
hormones like ABA. The miRNA also contributes towards this phenomenon. The induced/activated transcription factors or epigenetic regulators, then 
recruit other types of factor leading to the occurrence of multiple chromatin remodeling events at any loci in the genome. As a whole, these changes causes 
inhibition of growth related genes and expression of stress genes. On a global level, under stress, genome wide hypomethyation along with loci specific 
hypermethylation and activation of transposons is observed. An endogenous siRNA pathway is believed to contribute towards this hypermethylation event 
and thus contribute towards the maintenance of genome stability. Although most of these changes are generally reversible, few remain to generate “stress 
imprints” in plants. Few such events are passed to the next generation as trans-generational memory of stress. However, these events might not be common 
in occurrence. Interestingly, an endogenous siRNA pathway assists in both passages of memories like stress gene expression and hypermethylation and 
blocking others hypomethylation and transposition events. In some exceptional cases, such as drought stress, amazingly, the hypomethylation events were 
found to be carried by the epigenetic stress memory to the next generation. 
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