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ABSTRACT 
Modern agriculture practice using genetically engineered crops is emerging as an effective tool to combat the negative impact of abiotic 
stresses on crop production. Abiotic stresses such as salt, drought, temperature, cold, flooding, heavy metals, etc. remain the greatest 
constraint to crop production. Estimations revealed that abiotic stresses alone responsible for crop failure and crop productivity loss 
between 50-70%.  Global climate change further aggravating the frequency of abiotic stresses which is a serious challenge to feed the 
rapidly increasing world population. Plants respond to unfavorable environmental conditions in their habitat by developmental, 
physiological and biochemical ways to tolerate and/or sustain life. The main goal of modern agricultural research is to improve the 
potential of crop plants to survive under abiotic stresses for a long time. In this context, transgenic approaches are one of the potential 
ways for the genetic improvement of crop plants. Furthermore, functional genomics approaches revealed various mechanisms for crop 
improvement and abiotic stress tolerance. Genetic engineering of major crops such as rice, wheat, maize, soybean, pulses etc with genes 
from other sources is an extremely powerful tool for molecular plant breeding. Research has already come up with many transgenic crop 
plants with enhanced abiotic stress tolerance. The present article summarizes recent breakthroughs on the aforesaid aspects highlighting 
mainly transgenic plants overexpressing various genes for abiotic stress tolerance and improved crop productivity. 
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INTRODUCTION 
 
The world’s population is increasing at an alarming rate to 
reach about 9 billion by the end of 2050 (http:// 
www.un.org/esa/population/unpop.htm) but a proportional 
increase in agricultural productivity is hampered by various 
environmental factors in the changing climate, which is 
leading to food crisis. The food crisis is not a transient 
phenomenon and by 2050 there will be another 2.5 billion 
people on the planet, therefore, it is a great challenge to 
feed them (http://environmentalresearchweb.org/cws/ 
article/opinion/48593). Economic agricultural productivity 
losses due to the occurrence of a combination of abiotic 
stresses and climate change on crop plants are huge. Overall, 
reduction in crop productivity caused by abiotic stresses 
causes losses worth hundreds of millions of dollars each 
year (Mahajan and Tuteja 2005). According to an estima-
tion, it is reported that global warming decreased the yield 
of major crops like maize, wheat and barley by ~ 40 million 
metric tons per year between 1981 and 2002 (http:// 
environmentalresearchweb.org/cws/article/news/27343). 

Global effects on desertification, soil salinity, atmospheric 
CO2 enrichment and effects of other pollutants are predicted 
to cause dramatic changes in the climatic conditions of 
arable lands in this century. Being sessile in nature, plants 
cannot run away but often encounter and are bound to grow 
under various adverse environmental conditions, such as 
salinity, drought, chilling, heat, flooding, heavy metal or 
extreme light, which adversely affect the plant growth and 
productivity worldwide (Mahajan and Tuteja 2005; Tuteja 
2007; Tuteja et al. 2011, 2012a, 2012b). The stress manage-
ment through avoidance is not applicable in case of plants 
hence they have developed various systems within to coun-
ter those stresses. Plants have developed capacities to sense 
changes/stress around them and recruit various signalling 
molecules to transduce these signals locally or systemically 
to prepare themselves to manage it. Plants can afford only 
mild abiotic stresses putting in place molecular mechanisms 
that ensure survival and reproduction. Plants have evolved 
the ability to reprogram the expression of their genome in 
response to environmental changes. It has been estimated 
that the relative decreases in potential maximum yields 
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associated with abiotic stress factors account for more than 
70% (Bray et al. 2000). Therefore, it is clear that there is an 
urgent need to produce abiotic stress tolerant crops. Among 
abiotic stresses, salinity, drought and cold are of wide 
occurrence and have significant impact on crop produc-
tivity; therefore, tolerance to these stresses is a critical con-
dition for yield stability. Plants respond to various stresses 
through multifaceted molecular signalling pathways. Where, 
the significant changes at the molecular, cellular, physiolo-
gical and biochemical levels enable plants to respond to 
and/or adapt/survive under stressful conditions (Mishra et al. 
2006; Tuteja and Mahajan 2008; Tuteja and Sopory 2008a, 
2008b; Tuteja et al. 2011, 2012a, 2012b). 

In general, the stress signal is first perceived by the re-
ceptors present on the membrane of the plant cells. Fol-
lowing this, the signal information is transduced down-
stream resulting in the activation of various stress respon-
sive genes. The products of these stress genes ultimately 
lead to stress tolerance response or plant adaptation and 
help the plant to survive and surpass unfavourable con-
ditions (Tuteja and Sopory 2008a, 2012b; Tuteja et al. 2011, 
2012a, 2012b). The various stress responsive genes can be 
broadly categorized as early and late induced genes. Early 
genes are induced within minutes of stress signal perception, 
which include various transcription factors. Late genes in-
clude the major stress responsive genes such as RD (res-
ponsive to dehydration)/KIN (cold induced)/COR (cold res-
ponsive), which encodes and modulate the proteins needed 
for synthesis, for example LEA-like proteins, antioxidants, 
membrane stabilizing proteins and osmolytes (Tuteja and 
Sopory 2008a, 2008b). Understanding of molecular sig-
nalling pathways and identification of key molecules and 
their specific roles may provide a treasure trove of op-
portunity for molecular breeding approaches to increase the 
efficiency of crop plants under stressful conditions without 
yield penalty. Therefore, efforts should be taken to reduce 
hunger and promote growth and development of crop plants 
for sustainable agriculture. 

In this article, we discuss some of the genetic engineer-
ing approaches significant for crop improvement and abi-
otic stress tolerance. In addition, various genes potentially 
important for the development of abiotic stress tolerant crop 
plants are also highlighted. 
 
TRANSGENIC APPROACHES FOR ABIOTIC 
STRESS TOLERANCE IN CROP PLANTS 
 
Transgenic approaches are one of the many tools available 
for modern plant improvement programs. After the green 
revolution, now it’s the turn of gene revolution, which is 
basically the use of gene discovery and functional genomics 
strategies to reveal multitudinous mechanisms and gene 
families; hence to confer improved productivity and adapta-
tion to abiotic stresses. These gene families can further be 
manipulated into novel combinations, expressed ectopically, 
or transferred to species in which they do not naturally 
occur or vary. The post genomics era, enhancement of high-
throughput facilities which includes, computational biology, 
metabolomics, and phenomics, has enabled continuously 
improving capabilities to explore functional plant biology 
and to develop stress tolerant crops. This makes it possible 
to address hitherto unexplored aspects of fundamental and 
applied crop research at high levels of throughput, though 
not without challenges (Bhatnagar-Mathur et al. 2008; 
Jewell et al. 2010). 

It is well documented that among abiotic stresses ex-
treme temperatures (freezing, cold, heat), water availability 
(drought, flooding), and ion toxicity (salinity, heavy metals) 
are the major causes, which adversely affect the plant 
growth and productivity worldwide (Mahajan and Tuteja 
2005; Tuteja 2007; Tuteja et al. 2011, 2012a, 2012b). 
Nevertheless, it is also predicted that the aforesaid environ-
mental stresses will become more intense and frequent with 
climate change. To sense these environmental signals, 
higher plants have evolved a complex signaling network. 

Stress signal transduction pathways starts with signal per-
ception by receptors. Following this, the signals activate the 
generation of second messangers such as calcium and this 
secondary signaling molecules, which can modulate the 
intracellular Ca2+ level by receptor mediated Ca2+ release or 
it can bypass Ca2+ in early signaling steps and initiate a pro-
tein phosphorylation cascade (protein phosphatase, MAPK, 
CDPK, SOS3/PKS, etc.), which activates specific stress-
responsive genes for cellular protection through transcrip-
tion control (MYC/MTB, CBF/DREB) (Mishra et al. 2006; 
Tuteja and Mahajan 2008; Tuteja and Sopory 2008a, 2008b; 
Tuteja et al. 2011). Stress injury may occur through denatu-
ration of cellular proteins/enzymes or through the produc-
tion of ROS, Na+ toxicity and disruption of membrane in-
tegrity. In response to injury, plants trigger a detoxification 
process, which may include changes in the expression of 
LEA/dehydrin type gene, synthesis of molecular chaperones, 
proteinases, enzymes for scavenging ROS and other detoxi-
fication proteins. This process functions in the control and 
repair of stress induced damage and results in stress tol-
erance (Fig. 1). The complete understanding the molecular 
mechanism for abiotic stress tolerance is still a major chal-
lenge in biology. Overall, the stress response could be a 
coordinated action of many genes, which may cross-talk 
with each other. The stress-induced gene products are also 
involved in the generation of regulatory molecules like 
ABA, salicylic acid and ethylene, which can initiate the 
second round of signaling events. Recently, ABA has been 
mostly implicated to play a cricial role biotic stress tol-
erance process (Bhatnagar-Mathur et al. 2008). In the fol-
lowing sections, some of the aforesaid transgenic ap-
proaches including transcription factors (TFs), transporters, 
osmolytes, and genes discovered in plants in context with 
their role in reactive oxygen species (ROS)-perception, im-
pacts and/or detoxification, and antioxidant defense system 
components modulation will be critically discussed. 

 
TRANSCRIPTION FACTORS 
 
The perception of environmental stresses (including salinity, 
drought and cold) and the downstream signalling cascades 
to activate adaptive stress responses are key steps to acquire 
stress resistance (Fig. 1; Seki et al. 2003; Yamaguchi-
Shinozaki and Shinozaki 2006; Ishida et al. 2012). In the 
signal transduction network that leads from the perception 
of stress signals to the expression of stress-responsive genes, 
transcription factors (TFs) play an essential role. 

TFs are proteins that act together with other transcrip-
tional regulators, including chromatin remodeling/modi-
fying proteins, to employ or obstruct RNA polymerases to 
the DNA template; and it is estimated that plant genomes 
assign approximately 7% of their coding sequence to TFs, 
which proves the complexity of transcriptional regulation 
(Udvardi et al. 2007). Moreover, TFs were shown to inter-
act with cis-elements in the promoter regions of several 
stress-related genes and in this way, up-regulate the expres-
sion of many downstream genes resulting in imparting 
abiotic stress tolerance (Agarwal and Jha 2010). Because 
TFs, as opposed to most structural genes, tend to control 
multiple pathways steps, they have emerged as powerful 
tools for the manipulation of complex metabolic pathways 
in plants (Hussain et al. 2011). In fact, the transcriptional 
control is typically exerted through the action of TFs that 
are specifically involved in particular signal responses. It 
has been found that TF genes constitute a significant pro-
portion of stress-inducible genes, suggesting that gene 
transcriptional regulation of stress responses is a crucial 
mechanism for stress adaptation (Seki et al. 2003; Ishida et 
al. 2012). Different families of TFs such as ERF/AP2, HSF, 
bZIP, MYB, MYC, NFY, NAC,WRKY, Cys2His2, MADS-
box and zinc-finger have been shown to regulate the ex-
pression of stress-responsive genes (Yamaguchi-Shinozaki 
and Shinozaki 2006; Hirayama and Shinozaki 2010). Based 
on the presence of their DNA-binding domains the TFs can 
be classified into >50 different families, which mainly 
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includes MYB, NAM/ATAF1,2/CUC2 (NAC), WRKY, 
APETALA2/ethylene-responsive element binding factor 
(AP2/ERF), basic leucine zipper (bZIP), basic helix-loop-
helix (bHLH), homeodomain, and zinc finger transcription 
factors (Riechmannet al. 2000; Yamaguchi-Shinozaki and 
Shinozaki 2006). In the genome of the model plant, Arabi-
dopsis thaliana, about 1500 TFs are described which are 
considered to be involved in stress responsive gene expres-
sion (Riechmann et al. 2000). Extensive reports are now 
available conforming important role of TFs in the develop-
ment of abiotic stress tolerant transgenic crop plants (Table 
1). The phytohormone ABA-dependent signaling systems 
have been illustrated as pathways that have been reported to 
mediate stress adaptation by induction of at least two sepa-
rate regulons (a group of genes controlled by a certain TF): 
(a) the AREB/ABF (ABA-responsive element-binding pro-
tein/ABA-binding factor) regulon; and (b) the MYC 
(myelocytomatosis oncogene)/MYB (myeloblastosis onco-
gene) regulon (Saibo et al. 2009; Cutler et al. 2010). While 
the CBF/DREB regulon; and (2) the NAC (NAM, ATAF 
and CUC) and ZF-HD (zincfinger homeodomain) regulon 
represent the ABA-independent regulons (Nakashima et al. 
2009; Saibo et al. 2009). The NAC [NAM (No Apical 
Meristem), ATAF1-2, and CUC2 (Cup-Shaped Cotyledon)] 
TF have been reported to be associated with abiotic stress 
(Reguera et al. 2012). NAC regulates both the ABA-depen-
dent and independent genes. Salinity and drought stress 
conditions are mediated by ABA that induces expression of 
various genes. Dehydration-responsive element (DRE)/C-
repeat (CRT) proteins have been indentified to play impor-
tant roles in drought, cold and salinity response (Yama-
guchi-Shinozaki and Shinozaki 1994). In addition, The 
DRE-binding (DREB) and ethylene responsive element bin-
ding factors (ERF) subfamilies that belong to the large 
family of TFs APETALA2/ethylene-responsive (AP2/ 
EREBP), mediate plant signal transduction pathways in res-
ponse to environmental cues (Reguera et al. 2012). The pre-
sence of DRE/CRT and ABRE has been noted in many 
stress-responsive gene promoters, suggesting that ABRE 
also plays a role in stress-responsive transcription (Yama-
guchi-Shinozaki and Shinozaki 2006). ABRE binding pro-
teins/ABRE binding factors have also been identified in 
Arabidopsis, and both are bZIP-type TFs (Choi et al. 2000; 
Uno et al. 2000). MYB, NAC, and other families have also 
been suggested to play important roles in the stress response 

especially drought in various crop plants. The ABA-inde-
pendent stress-responsive genes are regulated by DREB 
proteins, which bind to DRE cis-elements and has also been 
reported that DREB1/CBF proteins (DREB1A-C/CBF1-3) 
is induced by cold stress (Liu et al. 1998; Nakashima et al. 
2000). A number of downstream genes get activated by 
overexpression of DREB transcription factors leading to 
enhanced abiotic stress tolerance (Table 1). Overexpression 
of SNAC1 (STRESS-RESPONSIVE NAC 1) in Oryza 
sativa reported to protect against drought and salinity stress 
(Hu et al. 2006, 2008; Jeong et al. 2010; Takasaki et al. 
2010). Moreover, the overexpression of NAC genes 
including OsNAC5, OsNAC6 and OsNAC10 was shown to 
improved environmental stress tolerance in transgenic O. 
sativa (Hu et al. 2008; Jeong et al. 2010; Takasaki et al. 
2010). Yokotani et al. (2009) reported that OsNAC063 from 
rice showed enhanced tolerance to salt and osmotic stress in 
A. thaliana. DREB1/CBF overexpression in Arabidopsis, 
triggers the upregulation of not only various stress-
responsive genes including LEA protein and cold-inducible 
KIN protein genes but also a C2H2 zinc finger transcription 
factor gene. This gene, termed STZ, is one of the direct tar-
get genes of DREB1/CBF (Maruyama et al. 2004; Saka-
moto et al. 2004). Because the overexpression of STZ, 
which functions as a transcriptional repressor, also enhances 
the tolerance to drought stress (Sakamoto et al. 2004), the 
transcriptional cascade including DREB/CBF and STZ 
appears to play a key role in the cold stress response in A. 
thaliana. CAMTA3 (Calmodulin Binding Transcription 
Activator) has been shown to be a positive regulator of the 
DREB1C/ CBF2 gene (Doherty et al. 2009). The heat-
inducible expression of HSP genes is regulated by heat 
shock transcription factors (HSFs). R2R3-MYB trans-
cription factors play wide functional roles, and involved in 
imparting stress tolerance against various abiotic stresses in 
transgenic plants (Table 1). Dai et al. (2007) reported that 
MYB3R-2I from O. sativa found to enhance salinity, 
dehydration and freezing stress tolerance and decreased 
sensitivity to ABA in transgenic Arabidopsis. The over-
expression of GmMYB76, GmMYB92, or GmMYB177 in 
Arabidopsis resulted in significantly higher seed germi-
nation under salinity (Liao et al. 2008). Overexpression of 
apple Myb 10 resulted in osmotic stress tolerance (Gao et al. 
2010). A heat stress-induced HSF, AtHsfA2, has also been 
shown to activate HSP expression and then enhance 
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Fig. 1 Generic pathway under salinity, drought cold and heat stress. Stress signal transduction pathways starts with signal perception by receptors. 
After this the signals activate the signaling mechanism, which helps to generate secondary signaling molecules, and activates specific stress-responsive 
genes for cellular protection through transcription control. In response to injury, plants trigger a detoxification process, which may include change in the 
expression of LEA/dehydrin type gene, synthesis of molecular chaperones, proteinases, enzymes for scavenging ROS and other detoxification proteins. 
This process functions in the control and repair of stress induced damage and results in stress tolerance. 

75



Plant Stress 7 (Special Issue 1), 73-83 ©2013 Global Science Books 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 Transgenic plants overexpressing various enzymes (oxidative stress, antioxidants, osmolytes, transporters, transcription factors) for abiotic stress 
tolerance in crop plants. Gene sources are abbreviated as Ag, A. globiformis; Ah, Atriplexhortensis; Al, Aeluropus littoralis; Am, Avicennia marina; At,
Arabidopsis thaliana; Bj, Brassica juncea; Bn, Brassica napus; Ec, E. coli; Eg, E. gunnii; Gm, Glycine max; Hv, Hordeum vulgare; Ib, Ipomoea batatas;
Lb, Limonium bicolour; Mp, Malus pumila; Nt, Nicotiana tabacum; P, Populus; Pf, Pyrococcus furiosus; Pg, Pennisetum glaucum; Ps, Pisum sativum; Pv,
Pteris vittata; S, Synechocystis PCC 6803; Sb, Salicornia brachiata; So, Spinacia oleracea; Ss, Suaeda salsa; Ta, Tamarix androssowii; Ta, Triticum 
aestivum; Th, Tamarix hispida; Va, Vigna aconitifolia 
Source/Gene Transgenic Response Reference 
At2-Cys Prx (2-cysteine peroxiredoxin) Solanum tuberosum L. cv. 

Atlantic 
Oxidative stress tolerance Kim et al. 2011 

BjOXS3 (Oxidative stress 3) Schizosaccharomyces 
pombe 

Enhanced tolerance to a range of metals and 
oxidizing chemicals 

Blanvillain et al. 2009 

PvGrx5 (Glutaredoxin) Arabidopsis thaliana High temperature stress and reduces oxidative 
damage to proteins 

Sundaram and 
Rathinasabapathi 2010 

PsMCM6 (Mini chromosome maintenance 
protein) 

Nicotiana tabacum Enhanced salt stress tolerance without yield 
penalty 

Dang et al. 2011 

TaALMT1 (Aluminum-activated malate 
transporter) 

Hordeum vulgare cv. 
Golden Promise 

Increase grain production on an acid soil Delhaize et al. 2009 

SsNHX1 (vacuolar Na+/H+ antiporter) Medicago sativa Salt tolerance Li et al. 2010 
ThSOS1-RNAi/Thellungiella halophilla (Salt 
overly sensitive) 

Thellungiella halophilla Salt tolerance Oh et al. 2009 

AtAvp1 (H+-PPases) Medicago sativa Salt tolerance Bao et al. 2009 
AtCLCc (Chloride channel) A. thaliana Salt tolerance Jossier et al. 2010 
AtNHX3 (Na+/H+antiporter) A. thaliana Tolerance to low potassium Liu et al. 2010 
AtCBL5 (CalcinurinB-like protein) A. thaliana Dehydration and salinity stress 

tolerance 
Cheong et al. 2010 

MAPKKK/DSM1 (MAPK kinase kinase) Oryza sativa Dehydration stress tolerance Ning et al. 2010 
CaCIPK6 (CBL interacting protein kinases) N. tabacum Salinity stress tolerance Tripathi et al. 2009 
AlSAP (A20/AN1 zinc-finger) N. tabacum Improved drought and salt stress tolerance Ben Saad et al. 2010 
OsAP37 (Transcription Factor) O. sativa Salt, low temperature and drought tolerance Oh et al. 2009 
AtAZI1 (Azelaic acid induced 1) A. thaliana and 

Saccharomyces cerevisiae
Freezing stress tolerance Xu et al. 2011 

LbDREB (Drought Responsive 
Element Binding Protein) 

N. tabacum Copper stress tolerance Ban et al. 2011 

HvDREB2 O. sativa Improved tolerance under water limitation Bihani et al. 2011 
PgDREB2A N. tabacum Salt and dehydration tolerance Agarwal et al. 2010 
SbDREB2A Escherichia coli 

(BL21DE3) 
Salt and dehydration tolerance Gupta et al. 2010 

OsDREB2B A. thaliana Dehydration and heat stress tolerance Matsukura et al. 2010 
GmERF3 N. tabacum Salt and dehydration stress 

tolerance 
Zhang et al. 2009 

CBF/DREB1 and COR15 Brassica oleracea var. 
botrytis 

Enhanced proline production and frost 
resistance 

Hadi et al. 2011 

TaDREB2 and TaDREB3 Triticum aestivum L. cv. 
Bobwhite and H. vulgare 
L. cv. Golden Promise 

Significant improvement in frost tolerance Morran et al. 2011 

MpMyb10 (Myeloblastoma) A. thaliana Osmotic stress Gao et al. 2010 
OsSNAC2 (No apical meristem) O. sativa Zhonghua 11 Salt and cold stress tolerance Hu et al. 2008 
AtNTL8(NAC) A. thaliana GA mediated salt signaling Kim et al. 2008 
OsONAC063 A. thaliana Salt and osmotic stress tolerance Yokotani et al. 2009 
EguCBF1a/b (C-repeat binding factor genes) Eucalyptus Low temperature stress tolerance Navarro et al. 2011 
ATHB6 (Transcription Factor) Lycopersicon esculentum Drought tolerance Mishra et al. 2011 
ThbZIP (Basic leucine zipper proteins) N. tabacum Salt stress tolerance by enhancing ROS 

scavenging system 
Wang et al. 2010 

BF1-3 (C-repeat binding factors) A. thaliana Frost tolerance Sharabi-Schwager et al. 2010
DDF1 (Dwarf and delayed flowering 1) A. thaliana Cold, drought, and heat stress tolerance Kang et al. 2011 
LeSOD (Superoxide dismutase) Pepper Drought tolerance Chatzidimitriadou et al. 2009
AmCu/Zn SOD O. sativa Pusa Basmati-1 MV, salinity and drought stress tolerance Prashanth et al. 2008 
NtMn SOD + APX Festuca arundinacea 

Schreb. cv. Kentucky-31
MV, H2O2, Cu, Cd and As tolerance due to 
increased SOD and APX activity 

Lee et al. 2007 

BjCAT3 (Catalase) N. tabacum Cd stress tolerance Guan et al. 2009 
Cytsod + cytapx N. tabacum ‘Xanthi Less oxidative stress and drought tolerance Faize et al. 2011 
PpAPX (Ascorbateperoxidase) N. tabacum Drought resistance and salt tolerance Li et al. 2009 
BntAPX Brassica napus Salt and drought stress tolerance Wang et al. 2011 
EcGR (Glutathione reductase) T. aestivum cv. Oasis 

protoplast 
Salt stress tolerance with higher GSH content Melchiorre et al. 2009 

AmMDAR N. tabacum Salt tolerance Kavitha et al. 2010 
AtDHAR (Dehydroascorbatereductase) N. tabacum Drought and salt tolerance with higher DHAR 

activity 
Eltayeb et al. 2007 

SsGST (Glutathione-S-transferase) Arabidopsis Salt tolerance Qi et al. 2010 
SGPX-2 A. thaliana Tolerance to H2O2, Fe ions, MV, chilling, high 

salinity or drought stresses 
Gaber et al. 2006 

TaP5CR (�1-pyrroline-5-carboxylate 
reductase) 

A. thaliana Salt tolerance Ma et al. 2008 
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acquired thermotolerance in A. thaliana (Charng et al. 
2007). Improved water use-efficiency but decreased trans-
piration have been achieved in O. sativa through over-
expressing HARDY (HRD), encoding a AP2/ERE-like TF 
(Karaba et al. 2007). 

 
TRANSPORTERS 
 
Plants suffer from dehydration or osmotic stress under sali-
nity, drought, and also under low-temperature conditions, 
which causes reduced availability of water for cellular func-
tion and maintenance of cellular turgor pressure. Salinity 
imposes severe deleterious effects on crop productivity in 
most plant species, mainly through osmotic stress and ion 
(Na+)-specific toxicity (Blumwald 2000; Blumwald et al. 
2000; Munns and Tester 2008; Tuteja et al. 2011). The 
accumulation of Na+ in the cytosol causes serious damage 
via inhibition of essential cellular processes, including pro-
tein synthesis and vital enzyme reactions (Flowers and 
Lauchli 1983; Murguia et al. 1995). It has been revealed 
from the recent studies that some classes of Na+ transporters 
play crucial roles in Na+ homeostasis during salinity stress 
(Horieet al. 2010; Hauser and Horie 2010; Uozumi and 
Schroeder 2010; Yamaguchi et al. 2012). Transporters vary 
in their structure and size from small organic molecules and 
peptides to multisubunit complexes. Membrane transport 
proteins are divided into three categories: pump, channel, 
and secondary transporters. The Arabidopsis plasma mem-
brane Na+/H+ antiporter SOS1 (salt overly sensitive 1), the 
Na+ transporter AtHKT1;1, and the tonoplast Na+/H+ anti-
porter AtNHX1 have drawn particular interest due to their 
capacity to transport Na+, and their molecular functions and 
physiological roles have been extensively studied (Rai et al. 
2012). The AtNHX1 gene was identified by sequence 
homology to the Nhx1 gene in Saccharomyces cerevisiae. 
The AtNHX1 transporter functions in Na+ sequestration into 
the vacuole during salinity stress to maintain a high K+/Na+ 
ratio in the cytosol (Apse et al. 1999; Gaxiola et al. 2001). 
Transgenic Arabidopsis and Lycopersicon esculentum 
plants overexpressing AtNHX1 were reported to accumu-
late abundant quantities of the transporter in their tonoplast; 
hence, exhibited substantially enhanced salt tolerance (Apse 
et al. 1999; Quintero et al. 2000; Zhang and Blumwald 
2001). Salt Overly Sensitive 1 (SOS1) encodes a membrane 
protein that is homologous to plasma membrane Na+/H+ 

antiporters from bacteria and fungi (Shi et al. 2002). Mutant 
analyses of sos1 plants have led to a working model of the 
SOS1 transporter under salinity stress, where SOS1 pre-
vents Na+ level in xylem sap by unloading/loading of Na+ 
into xylem vessels decided by the strength of salinity stress, 
and influenced Na+ transport from roots to shoots (Shi et al. 
2002). SOS1 also functions in direct Na+ extrusion to outer 
environment from the root tip where meristematic cells do 
not have large vacuoles for Na+ sequestration (Shi et al. 
2002). Plants possess a large number of genes encoding K+ 
transporters, including high-affinity transporters and ion 
channels (Maser et al. 2002). K+ constitutes the most im-
portant macronutrients taken up by plants, and serve essen-
tial roles as osmoticum and charge carriers. The mecha-
nisms of K+ uptake and its sensitivity to salt stress in the 
model plant species is largely known today. HKT (High-
affinity K+ transporter) is a group of well-studied plant Na+ 

transporters identified in several species (Platten et al. 
2006). HKT transporters are involved in root Na+ uptake in 
wheat (Laurie et al. 2002), rice (Garciadeblás et al. 2003) 
and barley (Haro et al. 2005). HKT1 (a wheat K+ transpor-
ter) was shown to mediate K+/Na+ symport when expressed 
in Xenopus oocytes (Schachtman and Schroeder 1994; 
Rubio et al. 1995; Gassmann et al. 1996), and the Arabi-
dopsis and rice homologues are now known to sustain sub-
stantial sodium currents (Uozumi et al. 2000; Horie et al. 
2001). Moreover, mutant analysis in Arabidopsis recently 
indicated significant contribution of AtHKT1 for Na+ in�ux 
in planta (Rus et al. 2001). Arabidopsis AKT1 and KAT1 
(inward-rectifying K+ channels) have been functionally 
characterized (Bauer et al. 2000; Buschmann et al. 2000). 
The exhibition of topological homology of plant K+ chan-
nels of the AKT/KAT family to animal (outward-rectifying) 
Shaker-type K+ channels has been reported (Zimmermann 
and Sentenac 1999). Moreover, plant inward-rectifying K+ 
channels were shown to exhibit high selectivity for K+ over 
other monovalent cations, and to specifically mediate K+ 
uptake and transport in plant cells (Schachtman et al. 1992). 
The K+ channels of the AKT/KAT subfamily are differently 
expressed in root and leaf tissues. In this context, Arabi-
dopsis KAT1 and its potato homologue KST1 were success-
fully expressed in guard cells (Nakamura et al. 1995; 
Müller-Röber et al. 1995). Cao et al. (1995) and Lagarde et 
al. (1996) reported that Arabidopsis AKT1 can primarily be 
expressed in root tissue and localized to epidermis, cortex, 
and endodermis by promoter activity analysis; whereas in 
tomato, Hartje et al. (2000) reported the localization of 
LKT1 to root hairs. Additionally, salinity stress-tolerant and 
-sensitive O. sativa were reported to differentially regulate 
AKT1-type K+ channel transcripts (Golldack et al. 2003). A. 
thaliana AKT1 (Arabidopsis K+ Transporter 1) was reported 
to be channel mediated that is regulated by voltage (a pro-
cess known as gating in which the channels open and close), 
and in this case to favour channel opening at negative 
voltages that promote net K+ influx. AKT1 and its relatives 
are members of the Kv-like (Shaker-like) family of channel 
proteins that form functional units as tetrameric assemblies 
around a central pore (Dubey et al. 2008; Jeanguenin et al. 
2008). Nevertheless, MATE (Multidrug And Toxic com-
pound Extrusion Transporters or Multidrug And Toxin 
Efflux) - a family of small organic molecule transporters 
and consisting of 400-700 amino acids with 9-12 transmem-
brane domains, functions actively in the detoxification of 
xenobiotics, transport of a wide range of metabolites such 
as cations, organic acids and secondary metabolites and also 
in heavy metal translocation and hyperaccumulation in 
plants (Yazaki 2005; Yazaki et al. 2008; Gill et al. 2012). 
There are reports of 56 MATE transporter genes in A. 
thaliana plant genome (Li et al. 2002; Yazaki et al. 2008). 
AtDTX1 (A. thaliana detoxification 1) is a member of the 
MATE family and serves as a carrier for a range of toxic 
compounds and is also capable of the detoxification of Cd2+ 
(Li et al. 2002). Whereas, FRD3 (ferric reductase defective 
3) - a gene encoding a member of MATE family, has been 
reported to be localized at root pericycle plasma mem-
branes; and functions in Fe homeostasis in Arabidopsis 
(Rogers and Guerinot 2002; Durrett et al. 2007), and also 
for translocation of other metals, such as Zn (Krämer et al. 
2007). Additionally, MATE family gene was reported to 

Table 1 (Cont.) 
Source/Gene Transgenic Response Reference 
SoBADH-1 (Betaine aldehyde 
dehydrogenase) 

N. tabacum Salt tolerance Yang et al. 2008 

betA (Choline dehydrogenase) Gossypium hirsutum L. Improved salt tolerance and seed cotton yield Zhang et al. 2011 
AhCMO (Choline monooxygenase) G. hirsutum L. Salt tolerance Zhang et al. 2009 
AgcodA (Choline oxidase) L. esculentum Drought and salt stress tolerance Goel et al. 2011 
AgcodA Brassica chinensis Enhanced tolerance to extreme temperature 

and high salinity 
Wang et al. 2010 

AtADC2 (Arginine decarboxylase) A. thaliana Drought tolerance Alcazar et al. 2010 
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protect sorghum against Al stress (Magalhães et al. 2007). 
Genetic engineering studies reported that overexpression of 
transporter genes in plants results in stress tolerance to vari-
ous abiotic stresses (Table 1). 

 
OSMOLYTES 
 
Abiotic stress factors are menace for agricultural producti-
vity. To cope with these stresses, plants have developed 
adaptive strategies by expressing specific genes and syn-
thesizing compatible solutes like proline, glycine betaine, 
trehalose and sugars (Djilianov et al. 2005). Glycine betaine 
(N,N,N-trimethylglycine-betaine; GB) and proline are two 
major osmoprotectant osmolytes, which are synthesized by 
many plants (but not all) in response to abiotic stress factors 
(Vinocur and Altman 2005). Many important agronomical 
crops, such as rice, potato, tomato and tobacco cannot syn-
thesize GB. Therefore, such plants overexpressing GB syn-
thesizing genes can result in the production of enough 
amount of GB, which lead plants to tolerate stresses in-
cluding salinity stress. The overexpression of the genes 
encoding betaine aldehyde decarboxylase from halophyte 
Suaedaliao tungensis improved the salinity tolerance in 
tobacco plants. The choline dehydrogenase gene (codA) 
from Arthrobacter globiformis helped salinity tolerance in 
rice (Vinocur and Altman 2005). The overexpression of the 
genes encoding betaine aldehyde decarboxylase from halo-
phyte S. tungensis improved the salinity tolerance in 
tobacco plants. The choline dehydrogenase gene (codA) 
from A. globiformis helped salinity tolerance in rice (Vino-
cur and Altman 2005). The overexpression of N-methyl 
transferase gene in cyanobacteria and Arabidopsis resulted 
in accumulation of GB in higher levels and improved 
salinity tolerance (Waditee et al. 2005). Overexpression of 
betA from E. coli in Triticum aestivum resulted in better salt 
tolerance and accumulated higher level of GB (He et al. 
2010). 

It is well documented that following salt, drought and 
metal stress there is a dramatic accumulation of proline. 
Free proline has been proposed to act as an osmoprotectant, 
a protein stabilizer, a metal chelator, an inhibitor of lipid 
peroxidation, OH� and 1O2 scavenger (Ashraf and Foolad 
2007; Trovato et al. 2008). The overexpression of the genes 
of its biosynthetic pathway showed better tolerance to 
plants under various environmental stresses (Table 1). The 
function of proline is thought to be an osmotic regulator 
under water stress, and its transportation into cells is medi-
ated by a proline transporter. Proline is not only an impor-
tant molecule in redox signaling, but also an effective quen-
cher of ROS formed under salt, metal and dehydration 
stress conditions in all plants, including algae (Alia and 
Pardha Saradhi 1991). Su and Wu (2004) reported that both 
constitutive expression and stress-inducible expression of 
the P5CScDNA in transgenic O. sativa have led to the 
accumulation of P5CS mRNA and proline, which resulted 
in higher salt and water deficiency stress tolerance. T. aesti-
vum plants overexpression of Vigna aconitifolia �1-
pyrroline-5-carboxylate synthetase (P5CS) cDNA under the 
control of a stress-induced promoter complex-AIPC resul-
ted in enhanced proline accumulation under water deficit. 
The tolerance to water deficit in transgenic plants was 
mainly due to protection mechanisms against oxidative 
stress and not caused by osmotic adjustment. Overexpres-
sion of P5CS gene in transgenic tobacco resulted in in-
creased production of proline and salinity/drought tolerance. 
Ueda et al. (2008) have reported that altered expression of 
barley proline transporter (HvProT) causes different growth 
responses in Arabidopsis, as it leads to the reduction in 
biomass production and decreased proline accumulation in 
leaves. Impaired growth of HvProT transformed plants was 
restored by exogenously adding proline, which suggested 
that growth reduction was caused by a deficiency of endo-
genous proline. The overexpression of GB and proline bio-
synthetic pathway genes enhances the abiotic stress tol-
erance in transgenic plants (Table 1). 

OXIDATIVE STRESS AND ANTIOXIDANT 
DEFENSE SYSTEM 
 
Abiotic stresses cause oxidative stress by the generation 
and/or accumulation of reactive oxygen species (ROS), 
which basically includes superoxide anion (O2�¯), hydroxyl 
radicals (OH�) and hydrogen peroxide (H2O2) (Gill and 
Tuteja 2010; Anjum et al. 2012; Gill et al. 2012) (Fig. 2). 
ROS react with organic molecules and causes membrane 
lipid peroxidation, protein oxidation, enzyme inhibition and 
DNA, RNA damage, etc. (Gill and Tuteja 2010; Gill et al. 
2012). Plants possess very efficient enzymatic (superoxide 
dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; 
glutathione reductase, GR; monodehydroascorbatereductase, 
MDHAR; dehydroascorbatereductase, DHAR; glutathione 
peroxidase, GPX; guaicolperoxidase, GOPX and glutathi-
one-S-transferase, GST) and non-enzymatic (ascorbic acid, 
ASH; glutathione, GSH; phenolic compounds, alkaloids, 
non-protein amino acids and �-tocopherols) antioxidant 
defense systems, which work in concert to control the cas-
cades of uncontrolled oxidation and protect plant cells from 
oxidative damage by scavenging of ROS (Gill and Tuteja 
2010; Anjum et al. 2012; Gill et al. 2012). Therefore, the 
overexpression of ROS scavengers can increase the plant 
resistance to various stresses such as salinity, drought, heat, 
cold, etc. (Table 1). 

Overexpression of a Mn-SOD in transgenic Arabidopsis 
plants also showed increased salt tolerance (Wang et al. 
2004). Furthermore, they showed that Mn-SOD activity as 
well as the activities of Cu/Zn-SOD, Fe-SOD, CAT and 
POD (peroxidase) was significantly higher in transgenic 
Arabidopsis plants than control (Wang et al. 2004). Cu/Zn-
SOD overexpressing transgenic tobacco plants showed mul-
tiple stress tolerance (Badawi et al. 2004). Overexpression 
of Mn-SOD in transformed L. esculentum plants also 
showed enhanced tolerance against salt stress (Wang et al. 
2007). Further, the combined expression of Cu/Zn-SOD and 
APX in transgenic Festuca arundinacea plants led to 
increased tolerance to MV (methyl viologen), H2O2, Cu, Cd 
and As (Lee et al. 2007). Pyramiding of antioxidative en-
zyme Cu/ZnSOD, APX, and DHAR in tobacco chloro-
plasts showed salinity and oxidative stress tolerance com-
pared to those plants expressing single or double gene (Lee 
et al. 2007). The overexpression of Cu/ZnSOD, APX, and 
DHAR resulted in ~1.6-2.1 times higher DHAR activity, 
higher ratios of reduced ascorbate to DHA, and oxidized 
glutathione (GSSG) to reduced glutathione (GSH) (Lee et 
al. 2007). Maize Cu/ZnSOD and/or CAT genes were tar-
geted to the chloroplasts of Brassica campestris and it was 
noted that exposure of transgenic plants to 400 ppb SO2 
showed enhanced tolerance than wild type (Tseng et al. 
2007). Transgenic Arabidopsis plants overexpressing 
OsAPXa or OsAPXb exhibited increased salt tolerance. It 
was found that the overproduction of OsAPXb enhanced 
and maintained APX activity to a much higher extent than 
OsAPXa in transgenic plants under different NaCl concen-
trations (Lu et al. 2007). Overexpression of a eukaryotic 
GR from B. campestris (BcGR) and E. coli GR (EcGR) was 
studied in E. coli in pET-28a. It was found that BcGR-over-
producing E. coli showed better growth and survival rate 
than the control but far better growth was noted in E. coli 
strain transformed with the inducible EcGR in the presence 
of paraquat, SA and Cd (Yoon et al. 2005). In an interesting 
study, transgenic Nicotiana tabacum plants with 30-70% 
less GR activity were used to find out the possible mecha-
nism of GR against oxidative stress. Transgenic plants with 
less GR activity showed enhanced sensitivity to oxidative 
stress. It was suggested that GR plays an important role in 
the regeneration of GSH and thus protects against oxidative 
stress also by maintaining the ASH pool (Ding et al. 2009). 
It has also been noted that the overexpression of DHAR in 
tobacco protected the plants against ozone toxicity (Chen 
and Gallie 2005). Overexpression of DHAR increased salt 
tolerance in A. thaliana (Ushimaru et al. 2006) and drought 
and ozone stress tolerance in tobacco (Eltayeb et al. 2006). 
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GST Nt107 expressing transgenic cotton lines were used to 
investigate the tolerance potential under various stresses 
like chilling, salinity, and herbicides and it was noted that 
transgenic seedlings exhibited ten-fold and five-fold higher 
GST activity under control and salt stress conditions, res-
pectively (Light et al. 2005). Transgenic tobacco plants 
overexpressing Prosopisjuli flora GST survived better than 
control plants under 15% PEG stress (George et al. 2010). It 
was noted that GPX activity in transgenic cotton seedlings 
was 30-60% higher under normal conditions, but was not 
different than GPX activity in wild type seedlings under salt 
stress conditions (George et al. 2010). Overexpression of 
various antioxidant enzymes has been found to enhance 
abiotic stress tolerance in transgenic plants (Table 1). 

 
CONCLUSIONS 
 
Comprehensive efforts have been made to unravel plant 
abiotic tolerance mechanisms in model as well as crop 
plants but still our understanding of the underlying mole-
cular basis of abiotic stress tolerance is not very well clear 
yet. As plants are sessile, stress is an unavoidable and integ-
ral part in the plant growth, development and evolution. 
Though it causes great deal of losses towards the yield in 
crop plants, the recent studies in this respect are providing 
leads to develop sustainable varieties. Functional genomics 
and high throughput analysis including microarray, trans-
criptomics, metabolomics, reverse genetics etc. supported 
by a high quality bioinformatics should answer some of 
these questions related to stress response. It has been 
revealed that transcription factors also play important role 
by activating/repressing target genes to help produce meta-
bolites, enzymes, osmolytes, osmoprotectants and other 
chaperon molecules, which provide protection to cell com-
ponents from the stress. Genetic engineering has opened up 
a new opportunity in crop improvement allowing the trans-
fer of desirable gene(s) across species and genera for deve-
loping transgenic plants with novel traits, such as built-in 
protection, improved nutritional qualities, and so on. The 
major attempt to enhance plant tolerance is the manipula-
tion of genes that are either directly involved in protection 
of cells against water loss or the genes that are involved in 
regulating signal transduction pathways in response to 
water stress. Much effort isstill required to uncover detail of 
a gene induced by cold, salinity, and drought stress, and 
their interacting partners to understand the complexity of 

the stress signal transduction pathways. Overall, a combina-
tion of a good genetic background with multiple transgenes/ 
alleles mining and promising performance in field con-
ditions will reveal the success of the development of abiotic 
stress-tolerant plants. 
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